設(shè)G是等腰△ABC底邊上的高、AD與腰AC上的中線BE的交點(diǎn).若AD=18,BE=15,則這個(gè)等腰三角形的面積為多少?

解:∵△ABC是等腰三角形,AD是底邊BC的高,
∴AD是底邊BC的中線,
∵BE是AC邊上的中線,且其與AD交于點(diǎn)G,
∴G為△ABC的重心,
∵AD=18,BE=15,
∴DG=AD=6,BG=BE=10,
∴BD==8,
∴S△ABC=BC×AD=144.
分析:根據(jù)等腰三角形三線合一的性質(zhì)可得到AD是底邊BC的中線,從而得到點(diǎn)G為△ABC的重心,從而不難求得DG,BG的長,再根據(jù)勾股定理求得BD的長,最后根據(jù)三角形面積公式求解即可.
點(diǎn)評(píng):此題主要考查等腰三角形的性質(zhì)及勾股定理的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,一底角為60°的等腰梯形ABCD的下底AB在x軸的正半軸上,A為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(m,0),對(duì)角線BD平分∠ABC,一動(dòng)點(diǎn)P在BD上以每秒一個(gè)單位長度的速度由B→D運(yùn)動(dòng)(點(diǎn)P不與B,D重合).過P作PE⊥BD交AB于精英家教網(wǎng)點(diǎn)E,交線段BC(或CD)于點(diǎn)F.
(1)用含m的代數(shù)式表示線段AD的長是
 

(2)當(dāng)直線PE經(jīng)過點(diǎn)C時(shí),它的解析式為y=
3
x-2
3
,求m的值;
(3)在上述結(jié)論下,設(shè)動(dòng)點(diǎn)P運(yùn)動(dòng)了t秒時(shí),△AEF的面積為S,求S與t的函數(shù)關(guān)系式;并寫出t為何值時(shí),S取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若點(diǎn)P從B點(diǎn)出發(fā)以2cm/秒的速度向A點(diǎn)運(yùn)動(dòng),點(diǎn)Q從A點(diǎn)出發(fā)以1cm/秒的速度向C點(diǎn)運(yùn)動(dòng),設(shè)P、Q分別從B、A同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒.解答下列問題:
(1)用含t的代數(shù)式表示線段AP,AQ的長;
(2)當(dāng)t為何值時(shí)△APQ是以PQ為底的等腰三角形?
(3)當(dāng)t為何值時(shí)PQ∥BC?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(如圖1),點(diǎn)P將線段AB分成一條較小線段AP和一條較大線段BP,如果
AP
BP
=
BP
AB
,那么稱點(diǎn)P為線段AB的黃金分割點(diǎn),設(shè)
AP
BP
=
BP
AB
=k,則k就是黃金比,并且k≈0.618.
精英家教網(wǎng)
(1)以圖1中的AP為底,BP為腰得到等腰△APB(如圖2),等腰△APB即為黃金三角形,黃金三角形的定義為:滿足
=
底+腰
≈0.618的等腰三角形是黃金三角形;類似地,請(qǐng)你給出黃金矩形的定義:
 

(2)如圖1,設(shè)AB=1,請(qǐng)你說明為什么k約為0.618;
(3)由線段的黃金分割點(diǎn)聯(lián)想到圖形的“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成面積為S1和面積為S2的兩部分(設(shè)S1<S2),如果
S1
S2
=
S2
S
,那么稱直線l為該圖形的黃金分割線.(如圖3),點(diǎn)P是線段AB的黃金分割點(diǎn),那么直線CP是△ABC的黃金分割線嗎?請(qǐng)說明理由;
(4)圖3中的△ABC的黃金分割線有幾條?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一張等腰直角三角形紙片ABC,∠A=90°,AB=AC=2
2
,另有一張等腰梯形紙片DEFG,DG∥EF,DE=GF.現(xiàn)將兩張紙片疊放在一起(如圖1),此時(shí)梯形的下底EF與BC邊完全重合,梯形的兩腰分別落在AB,AC上,且D,G恰好分別是AB,AC的中點(diǎn).
(1)求BC的長及等腰梯形DEFG的面積;
(2)實(shí)驗(yàn)與探究(備用圖供實(shí)驗(yàn)、探究使用)
如圖2,固定△ABC,將等腰梯形DEFG以每秒1厘米的速度沿射線BC方向平行移動(dòng),宜到點(diǎn)E與點(diǎn)C重合時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為x秒時(shí),等腰梯形平移到D1EFG1的位置.
①當(dāng)x為何值時(shí),四邊形DBED1是菱形,并說明理由.
②設(shè)△ABC與等腰梯形D1EFG1重疊部分的面積為y,直接寫出y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》中考題集(41):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一底角為60°的等腰梯形ABCD的下底AB在x軸的正半軸上,A為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(m,0),對(duì)角線BD平分∠ABC,一動(dòng)點(diǎn)P在BD上以每秒一個(gè)單位長度的速度由B→D運(yùn)動(dòng)(點(diǎn)P不與B,D重合).過P作PE⊥BD交AB于點(diǎn)E,交線段BC(或CD)于點(diǎn)F.
(1)用含m的代數(shù)式表示線段AD的長是______;
(2)當(dāng)直線PE經(jīng)過點(diǎn)C時(shí),它的解析式為y=x-2,求m的值;
(3)在上述結(jié)論下,設(shè)動(dòng)點(diǎn)P運(yùn)動(dòng)了t秒時(shí),△AEF的面積為S,求S與t的函數(shù)關(guān)系式;并寫出t為何值時(shí),S取得最大值,最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案