【題目】在推進(jìn)城鄉(xiāng)生活垃圾分類的行動中,為了了解社區(qū)居民對垃圾分類知識的掌握情況,某社區(qū)隨機(jī)抽取40名居民進(jìn)行測試,并對他們的得分?jǐn)?shù)據(jù)進(jìn)行收集、整理、描述和分析.下面給出了部分信息:
a.社區(qū)40名居民得分的頻數(shù)分布直方圖:(數(shù)據(jù)分成5組:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100):
b.社區(qū)居民得分在80≤x<90這一組的是:
80 80 81 82 83 84 84 85 85 85 86 86 87 89
c.40個社區(qū)居民的年齡和垃圾分類知識得分情況統(tǒng)計圖:
d.社區(qū)居民甲的垃圾分類知識得分為89分.
根據(jù)以上信息,回答下列問題:
(1)社區(qū)居民甲的得分在抽取的40名居民得分中從高到低排名第 ;
(2)在垃圾分類得分比居民甲得分高的居民中,居民年齡最大約是 歲;
(3)下列推斷合理的是 .
①相比于點A所代表的社區(qū)居民,居民甲的得分略高一些,說明青年人比老年人垃圾分類知識掌握得更好一些;
②垃圾分類知識得分在90分以上的社區(qū)居民年齡主要集中在15歲到35歲之間,說明青年人垃圾分類知識掌握更為全面,他們可以向身邊的老年人多宣傳垃圾分類知識.
【答案】(1)8;(2)45;(3)②.
【解析】
(1)由題意根據(jù)90≤x<100的人數(shù)有7人,即可判斷;
(2)根據(jù)題意直接利用圖2中信息判斷即可;
(3)根據(jù)題意直接利用圖2中信息進(jìn)行分析判斷即可.
解:(1)∵90≤x<100的人數(shù)有7人,
∴89分又是80≤x<90中的最高分,
∴89分是第8名,
故答案為:8.
(2)觀察圖2可知,在垃圾分類得分比居民甲得分高的居民中,居民年齡最大約是45歲.
故答案為:45.
(3)觀察圖象可知:垃圾分類知識得分在90分以上的社區(qū)居民年齡主要集中在15歲到35歲之間,說明青年人垃圾分類知識掌握更為全面,他們可以向身邊的老年人多宣傳垃圾分類知識.
故②正確.
故答案為:②.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD內(nèi),將兩張邊長分別為a和b(a>b)的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),矩形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖2中陰影部分的周長與圖1中陰影部分的周長的差為l,若要知道l的值,只要測量圖中哪條線段的長( 。
A.aB.bC.ADD.AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全球已經(jīng)進(jìn)入大數(shù)據(jù)時代,大數(shù)據(jù)()是指數(shù)據(jù)規(guī)模巨大,類型多樣且信息傳播速度快的數(shù)據(jù)庫體系.大數(shù)據(jù)在推動經(jīng)濟(jì)發(fā)展,改善公共服務(wù)等方面日益顯示出巨大的價值為創(chuàng)建大數(shù)據(jù)應(yīng)用示范城市,我市某機(jī)構(gòu)針對市民最關(guān)心的四類生活信息進(jìn)行了民意調(diào)查(被調(diào)查者每人限送一項),下面是根據(jù)調(diào)查結(jié)果繪制出不完整的兩個統(tǒng)計圖表:
生活信息關(guān)注度條形統(tǒng)計圖
A:政府服務(wù)信息 B:城市醫(yī)療信息 C:交于資源信息 D:交通信息
生活信息關(guān)注度扇形統(tǒng)計圖
請根據(jù)圖中提供的信息,解答下列問題:
(1)本次參與調(diào)查的人數(shù)是______,扇形統(tǒng)計圖中部分的圓心角的度數(shù)是_______.并補(bǔ)全條形統(tǒng)計圖;
(2)這次調(diào)查的市民最關(guān)心的四類生活信息的眾數(shù)是_______類;
(3)若我市現(xiàn)有常住人口約600萬,請你估計最關(guān)心“城市醫(yī)療信息”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,BE⊥CD于點E,DF⊥BC于點F.
(1)求證:BF=DE;
(2)分別延長BE和AD,交于點G,若∠A=45°,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,CD是△ABC的中線,如果上的所有點都在△ABC的內(nèi)部或邊上,則稱為△ABC的中線。
(1)在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中點.
①如圖1,若∠A=45°,畫出△ABC的一條中線弧,直接寫出△ABC的中線弧所在圓的半徑r的最小值;
②如圖2,若∠A=60°,求出△ABC的最長的中線弧的弧長l.
(2)在平面直角坐標(biāo)系中,已知點A(2,2),B(4,0),C(0,0),在△ABC中,D是AB的中點.求△ABC的中線弧所在圓的圓心P的縱坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與y軸交于點A,與拋物線的對稱軸交于點B,將點A向右平移5個單位得到點C,連接AB,AC得到的折線段記為圖形G.
(1)求出拋物線的對稱軸和點C坐標(biāo);
(2)①當(dāng)時,直接寫出拋物線與圖形G的公共點個數(shù).
②如果拋物線與圖形G有且只有一個公共點,求出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小菲設(shè)計的“作一個角等于已知角的二倍”的尺規(guī)作圖過程.
已知:中,.
求作:,使得.
作法:如圖,
①分別以點和點為圓心,大于的長為半徑作弧,兩弧交于、點,作直線;
②分別以點和點為圓心,大于的長為半徑作弧,兩弧交于、點,作直線,和交于點;
③連接和;
④以點為圓心,的長為半徑作.
所以.
根據(jù)小菲設(shè)計的尺規(guī)作圖過程.
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:連接
∵和分別為、的垂直平分線,
∴________.
∴是的外接圓.
∵點是上的一點,
∴.(____________).(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,存在拋物線以及兩點.
(1)求該拋物線的頂點坐標(biāo);(用含的代數(shù)式表示)
(2)若該拋物線經(jīng)過點,求此拋物線的表達(dá)式;
(3)若該拋物線與線段有公共點,結(jié)合圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AD=BC,AB=10,CD=4,DM⊥AB于點M.連接BD并延長到E,使DE=BD,作EF⊥AB,交BA的延長線于點F.
(1)求MB的長;
(2)求AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com