【題目】如圖,在中,,作的角平分線交于點(diǎn),以為圓心,為半徑作圓.

1)依據(jù)題意補(bǔ)充完整圖形;(尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)

2)求證:與直線相切;

3)在(2)的條件下,若與直線相切的切點(diǎn)為,相交于點(diǎn),連接,;其中,,求的長(zhǎng).

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3

【解析】

1)根據(jù)尺規(guī)作圖的規(guī)則作圖即可.

2)根據(jù)角平分線證明邊和角,再根據(jù)切線長(zhǎng)定理求證即可.

3)先在(2)的前提下,根據(jù)三角形相似,求出圓的半徑,再根據(jù)△ODC∽△ABC求出AB即可.

1)作圖如下:

2)證明:過(guò)點(diǎn)OODAC,垂足為D

∵∠ABC=90°

OBAB,

AO平分∠BACOBAB,ODAC,

OB=OD,

∴⊙O與直線AC相切.

2)由(1)可知,∠ODC=90°,

BF為直徑

∴∠BDF=90°

∴∠ODC=BDF,

∴∠BDO=CDF,

OB=OD,

∴∠BDO=DBO

CDF=DBO,且∠DCF=BCD,

∴△DCF∽△BCD,

,CF=2,

BC=6

OB=OF=2,

OC=4OD=2,

∵△ODC∽△ABC

,OD=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)九(5)班為了了解全班學(xué)生喜歡球類(lèi)活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛(ài)好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如下的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類(lèi)),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

1)九(5)班的學(xué)生人數(shù)為_________,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)扇形統(tǒng)計(jì)圖中n=__________,m=___________;

3)排球興趣小組4名學(xué)生中有22女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求選出的2名學(xué)生恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形ABCD,等腰直角三角板的直角頂點(diǎn)落在正方形的頂點(diǎn)D處,使三角板繞點(diǎn)D旋轉(zhuǎn).

1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時(shí),猜想CEAF的數(shù)量關(guān)系,并加以證明;

2)在(1)的條件下,若DEAECE13,求∠AED的度數(shù);

3)若BC4,點(diǎn)M是邊AB的中點(diǎn),連結(jié)DMDMAC交于點(diǎn)O,當(dāng)三角板的邊DF與邊DM重合時(shí)(如圖2),若OF,求DFDN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,AD與圓相切,請(qǐng)?jiān)谙聢D中,僅用無(wú)刻度的直尺按要求畫(huà)圖.

1)若BC是圓的直徑,畫(huà)出平行四邊形ABCD的邊CD上的高;

2)若CD與圓相切,畫(huà)出平行四邊形ABCD的邊BC上的高AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,在△ABC中,EBC的中點(diǎn),PAE的中點(diǎn),則稱(chēng)CP是△ABC的“雙中線”.若∠ACB90°,AC3,AB5,則CP________;

2)在圖2中,E是正方形ABCD一邊上的中點(diǎn),PBE上的中點(diǎn),則稱(chēng)AP是正方形ABCD的“雙中線”.若AB4,則AP的長(zhǎng)為__________;(按圖示輔助線求解)

3)在圖3中,AP是矩形ABCD的“雙中線”.若AB4,BC6,請(qǐng)仿照(2)中的方法求出AP的長(zhǎng),并說(shuō)明理由;

4)在圖4中,AP是□ABCD的“雙中線”,若AB4,BC10,∠BAD120°,求△ABP的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,折疊矩形的一邊,使點(diǎn)落在邊的點(diǎn)處,折痕為,連接.已知點(diǎn)的坐標(biāo)為,二次函數(shù)圖象經(jīng)過(guò)、三點(diǎn).

1)求函數(shù)解析式;

2)在軸下方拋物線上有一動(dòng)點(diǎn),過(guò)點(diǎn)軸,交軸于點(diǎn),連接,當(dāng)相似時(shí),求點(diǎn)的坐標(biāo).

3)在拋物線對(duì)稱(chēng)軸上是否存在一點(diǎn),使有最大值?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平行四邊形內(nèi)有兩個(gè)全等的正六邊形,若陰影部分的面積記為,平行四邊形的面積記為,的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量一個(gè)鐵球的直徑,將該鐵球放入工件槽內(nèi),測(cè)得的有關(guān)數(shù)據(jù)如圖所示(單位:cm),則該鐵球的直徑為(

A.12 cmB.10 cmC.8 cmD.6 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M是正方形ABCDCD上一點(diǎn),連接AM,作DEAM于點(diǎn)E,BFAM于點(diǎn)F,連接BE,若AF1,四邊形ABED的面積為6,則∠EBF的余弦值是(  )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案