【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開(kāi)展了尋找古樹(shù)活動(dòng),如圖,在一個(gè)坡度(坡比)的山坡上發(fā)現(xiàn)一棵古樹(shù),測(cè)得古樹(shù)低端到山腳點(diǎn)的距離米,在距山腳點(diǎn)水平距離米的點(diǎn)處,測(cè)得古樹(shù)頂端的仰角(古樹(shù)與山坡的剖面、點(diǎn)在同一平面內(nèi),古樹(shù)與直線垂直),求古樹(shù)的高度約為多少米? (結(jié)果保留一位小數(shù),參考數(shù)據(jù))
【答案】23.3米
【解析】
延長(zhǎng)DC交EA的延長(zhǎng)線于點(diǎn)F,則CF⊥EF,設(shè)CF=k,由i=1:2.4,則AF=2.4k,在Rt△ACF中,根據(jù)勾股定理得到列方程求k值,從而求得CF的長(zhǎng),然后在Rt△DEF中,利用tanE=解直角三角形求得DF的長(zhǎng),從而使問(wèn)題得解.
解:延長(zhǎng)交直線于點(diǎn),則 ,
∴設(shè)CF=k,由i=1:2.4,則AF=2.4k,
在Rt△ACF中,由勾股定理得,
∴,
解得:k=10,
∴CF=10,AF=24,
∴EF=AF+AE=30.
在Rt△DEF中,tanE=
∴
故古樹(shù)的高度約為米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有多少人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖物體由兩個(gè)圓錐組成.其主視圖中,,,若上面圓錐的側(cè)面積為,則下面圓錐的側(cè)面積為( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了美化校園,學(xué)校決定利用現(xiàn)有的2660盆甲種花卉和3000盆乙種花卉搭配A、B兩種園藝造型共50個(gè)擺放在校園內(nèi),已知搭配一個(gè)A種造型需甲種花卉70盆,乙種花卉30盆,搭配一個(gè)B種造型需甲種花卉40盆,乙種花卉80盆.則符合要求的搭配方案有幾種( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是的直徑,和是的兩條切線,與相切于點(diǎn),分別交、于、兩點(diǎn)
(1)如圖1,求證:
(2)如圖2,連接并延長(zhǎng)交于點(diǎn),連接.若,,求圖中陰影部分的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=-x-與x,y兩軸分別交于A,B兩點(diǎn),與反比例函數(shù)y=的圖象在第二象限交于點(diǎn)C.過(guò)點(diǎn)A作x軸的垂線交該反比例函數(shù)圖象于點(diǎn)D.若AD=AC,則點(diǎn)D的縱坐標(biāo)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于點(diǎn)D,按下列步驟作圖:
步驟1:分別以點(diǎn)C和點(diǎn)D為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于M,N兩點(diǎn);
步驟2:作直線MN,分別交AC,BC于點(diǎn)E,F(xiàn);
步驟3:連接DE,DF.
若AC=4,BC=2,則線段DE的長(zhǎng)為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正方形中,點(diǎn)分別是的中點(diǎn),與交于點(diǎn)P,則的長(zhǎng)度為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E,F在正方形ABCD的對(duì)角線BD上,且BE=DF.求證:
(1)△ABE≌△CDF;
(2)四邊形AECF是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com