【題目】如圖,已知l1l2l3,相鄰兩條平行直線間的距離相等,若等腰△ABC的三個頂點分別在這三條平行直線上,若∠ACB90°,則sinα的值是(

A.B.C.D.

【答案】D

【解析】

過點AADl1D,過點BBEl1E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用角角邊證明△ACD和△CBE全等,根據(jù)全等三角形對應邊相等可得CDBE,然后利用勾股定理列式求出AC,再根據(jù)等腰直角三角形斜邊等于直角邊的倍求出AB,然后利用銳角的正弦等于對邊比斜邊列式計算即可得解.

解:如圖,過點AADl1D,過點BBEl1E,設l1,l2l3間的距離為1,

∵∠CAD+ACD90°

BCE+ACD90°,

∴∠CAD=∠BCE,

在等腰直角△ABC中,ACBC,

在△ACD和△CBE中,∠CAD=BCE,∠ADC=BEC=90°,AC=BC

∴△ACD≌△CBEAAS),

CDBE1

RtACD中,AC

在等腰直角△ABC中,ABAC

sinα

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖拋物線x軸交于點A(-1,0),頂點坐標(1,n),與y軸的交點在(02),(0,3)之間(不包含端點),則下列結(jié)論:①a+b=0;②;③若點(-2y1),,(2,y3)在此拋物線上,則y1y2y3;④當1<x<3時,總有ax2+bx+c>0;⑤關于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.正確的是(

A.①②④⑤B.①②③④C.④⑤D.②③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓柱底面半徑為cm,高為18cm,點A、B分別是圓柱兩底面圓周上的點,且A、B在同一母線上,用一根棉線從A點順著圓柱側(cè)面繞3圈到B點,則這根棉線的長度最短為(  )

A.24cmB.30cmC.2cmD.4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,=n,MBC上的一點,連接BM

1)如圖1,若n=1,

①當MAC的中點,當BMCDH,連接AH,求∠AHD的度數(shù);

②如圖2,當HCD的中點,∠AHD=45°,求的值和∠CAH的度數(shù);

2)如圖3,CHAMH,連接CH并延長交ACQMAC中點,直接寫出tanBHQ的值(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】積極響應政府提出的“綠色發(fā)展·碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查知,購買3量男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.

(1)求男式單車和女式單車的單價;

(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABDE是平行四邊形,C為邊B D延長線上一點,連結(jié)AC、CE,使AB=AC

1)求證:△BAD≌△AEC;

2)若∠B=30°,∠ADC=45°,BD=10,求平行四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工藝品店購進AB兩種工藝品,已知這兩種工藝品的單價之和為200元,購進2A種工藝品和3B種工藝品需花費520元.

1)求A,B兩種工藝品的單價;

2)該店主欲用9600元用于進貨,且最多購進A種工藝品36個,B種工藝品的數(shù)量不超過A種工藝品的2倍,則共有幾種進貨方案?

3)已知售出一個A種工藝品可獲利10元,售出一個B種工藝品可獲利18元,該店主決定每售出一個B種工藝品,為希望工程捐款m元,在(2)的條件下,若AB兩種工藝品全部售出后所有方案獲利均相同,則m的值是多少?此時店主可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,P,Q分別在AB,BC的延長線上,BP=CQ,連接AQ,DP交于點O,并分別與CD,BC交于點F,E,連接AE.下列結(jié)論:

AQDP

OA2=OEOP

SAOD=S四邊形OECF

BP=1時,tanOAE=

其中正確結(jié)論的序號是    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某口罩加工廠有兩組工人共人,組工人每人每小時可加工口罩只,組工人每人每小時可加工口罩只,兩組工人每小時一共可加工口罩只.

1)求兩組工人各多少人;

2)由于疫情加重兩組工人均提高了工作效率,一名組工人和一名組工人每小時共可生產(chǎn)口罩只,若兩組工人每小時至少加工只口罩,那么組工人每人每小時至少加工多少只口罩?

查看答案和解析>>

同步練習冊答案