如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)軸上,是線段的中點(diǎn).將線段繞著點(diǎn)順時(shí)針方向旋轉(zhuǎn),得到線段,連結(jié)、

(1)判斷的形狀,并簡(jiǎn)要說明理由;
(2)當(dāng)時(shí),試問:以、、、為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出相應(yīng)的 的值?若不能,請(qǐng)說明理由;
(3)當(dāng)為何值時(shí),相似?
(1)證明見解析;(2)當(dāng)時(shí),以、、為頂點(diǎn)的四邊形為平行四邊形,理由見解析;(3)

試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得PB=PC,∠PBC=90°,故△PBC是等腰直角三角形;
(2)以P、O、B、C為頂點(diǎn)的四邊形為平等四邊形:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823031857023806.png" style="vertical-align:middle;" />,所以O(shè)B∥PC,又點(diǎn)B是PA的中點(diǎn),所以O(shè)B=BP=PC.故四邊形POBC是平等四邊形.此時(shí)有,即.即,從而可求t的值;
(3)由題意可知,, 分兩種情況討論:當(dāng)時(shí),,此時(shí), ;當(dāng)時(shí),,此時(shí),;因此,當(dāng)時(shí),相似
試題解析:(1)△PBC是等腰直角三角形.
∵線段PB繞著點(diǎn)P順時(shí)針方向旋轉(zhuǎn)90°,得到線段PC
∴PB=PC,∠BPC=90°,
∴△PBC是等腰直角三角形.
(2)當(dāng)OB⊥BP時(shí),以P、O、B、C為頂點(diǎn)的四邊形為平行四邊形.
∵∠OBP=∠BPC=90°
∴OB∥PC,
∵B是PA的中點(diǎn)

∴四邊形POBC是平行四邊形
當(dāng)OB⊥BP時(shí),有

(不合題意)
∴當(dāng)t=2時(shí),以P、O、B、C為頂點(diǎn)的四邊形為平行四邊形.
(3)由題意可知,,
當(dāng)時(shí),,此時(shí)
 
當(dāng)時(shí),,此時(shí)

∴當(dāng)時(shí),相似
考點(diǎn): 1.等腰直角三角形的判定;2.平等四邊形的判定;3.相似三角形的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

提出問題:如圖①,在四邊形ABCD中,點(diǎn)E、F是AD的n等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的n等分點(diǎn)中最中間2個(gè),(其中n為奇數(shù)),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
                                         
探究發(fā)現(xiàn):為了解決這個(gè)問題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:
(1)如圖②:四邊形ABCD中,點(diǎn)E、F是AD的3等分點(diǎn),點(diǎn)G、H是BC的3等分點(diǎn),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
如圖③,連接EH、BE、DH,

因?yàn)椤鱁GH與△EBH高相等,底的比是1:2,
所以SEGH=SEBH
因?yàn)椤鱁FH與△DEH高相等,底的比是1:2,
所以SEFH=SDEH
所以SEGH+SEFH=SEBH +SDEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因?yàn)椤鱀BE與△ABD高相等,底的比是2:3,
所以SDBE=SABD
因?yàn)椤鰾DH與△BCD高相等,底的比是2:3,
所以SBDH=SBCD
所以SDBE +SBDH=SABD+SBCD =(SABD+SBCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD
(1)如圖④:四邊形ABCD中,點(diǎn)E、F是AD的5等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的5等分點(diǎn)中最中間2個(gè),連接EG、FH,猜想:S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢                       
驗(yàn)證你的猜想:

(2)問題解決:如圖①,在四邊形ABCD中,點(diǎn)E、F是AD的n等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的n等分點(diǎn)中最中間2個(gè),連接EG、FH,(其中n為奇數(shù))
那么S四邊形EFHG與S四邊形ABCD之間的關(guān)系為:                            (不必寫出求解過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了測(cè)量校園水平地面上一棵樹的高度,數(shù)學(xué)興趣小組利用一根標(biāo)桿、皮尺,設(shè)計(jì)如圖所示的測(cè)量方案.已知測(cè)量同學(xué)眼睛A、標(biāo)桿頂端F、樹的頂端E在同一直線上,此同學(xué)眼睛距地面1.6米,標(biāo)桿為3.1米,且BC=1米,CD=5米,請(qǐng)你根據(jù)所給出的數(shù)據(jù)求樹高ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC是邊長(zhǎng)為6cm的等邊三角形,動(dòng)點(diǎn)P,Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB,BC方向勻速運(yùn)動(dòng),其中點(diǎn)P運(yùn)動(dòng)的速度是1cm/s,點(diǎn)Q運(yùn)動(dòng)的速度是2cm/s,當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),

解答下列問題:
(1)當(dāng)為何值時(shí),△BPQ為直角三角形;
(2)設(shè)△BPQ的面積為S(cm2),求S與的函數(shù)關(guān)系式;
(3)作QR∥BA交AC于點(diǎn)R,連結(jié)PR,當(dāng)為何值時(shí),△APR∽△PRQ ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,已知點(diǎn)(﹣4,2),(﹣2,﹣2),以原點(diǎn)為位似中心,把△縮小,所得三角形與△的相似比為,則點(diǎn)的對(duì)應(yīng)點(diǎn)′的坐標(biāo)是
A.(﹣2,1)B.(﹣8,4)
C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知△ABC∽△DEF,∠A=70°,∠C=50°,則∠E=    °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在等腰梯形ABCD中,下底BC是上底AD的兩倍,E為BC的中點(diǎn),R為DC的中點(diǎn),BR交AE于點(diǎn)P,則EP:AP=
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果,那么的值是(      )
A.B.C.D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)A1、A2、A3、…,點(diǎn)B1、B2、B3、…,分別在射線OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2=         ,AnBn=            .(n為正整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案