【題目】“食品安全”受到全社會的廣泛關注,我市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有_________人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_________度;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù);
扇形統(tǒng)計圖 條形統(tǒng)計圖
【答案】 60 90 (2) 300人
【解析】分析:(1)由了解很少的有30人,占50%,可求得接受問卷調查的學生數(shù),繼而求得扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角;
(2)由(1)可求得了解的人數(shù),繼而補全條形統(tǒng)計圖;
(3)利用樣本估計總體的方法,即可求得答案.
詳解:(1)∵了解很少的有30人,占50%,∴接受問卷調查的學生共有:30÷50%=60(人);
∴扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;
故答案為:60,90;
(2)60﹣15﹣30﹣10=5;
補全條形統(tǒng)計圖得:
(3)根據(jù)題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù)為300人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB的中點,四邊形BCED為平行四邊形,DE,AC相交于F.連接DC,AE.
(1)試確定四邊形ADCE的形狀,并說明理由.
(2)若AB=16,AC=12,求四邊形ADCE的面積.
(3)當△ABC滿足什么條件時,四邊形ADCE為正方形?請給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調控手段達到節(jié)水的目的.該市自來水收費價格見價目表.
若某戶居民月份用水,則應收水費:元.
(1)若該戶居民月份用水,則應收水費______元;
(2)若該戶居民、月份共用水(月份用水量超過月份),共交水費元,則該戶居民,月份各用水多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小華將一條直角邊長為1的一個等腰直角三角形紙片(如圖1),沿它的對稱軸折疊1次后得到一個等腰直角三角形(如圖2),再將圖2的等腰直角三角形沿它的對稱軸折疊后得到一個等腰直角三角形(如圖3),則圖3中的等腰直角三角形的一條腰長為_________;同上操作,若小華連續(xù)將圖1的等腰直角三角形折疊n次后所得到的等腰直角三角形(如圖n+1)的一腰長為_________.
圖1 圖2 圖3 圖n+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四邊形ABCD的面積是18,則DP的長是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線(k為常數(shù),且k>0)與x軸的交點為A、B,與y軸的交點為C,經(jīng)過點B的直線與拋物線的另一個交點為D.
(1)若點D的橫坐標為x= -4,求這個一次函數(shù)與拋物線的解析式;
(2)若直線m平行于該拋物線的對稱軸,并且可以在線段AB間左右移動,它與直線BD和拋物線分別交于點E、F,求當m移動到什么位置時,EF的值最大,最大值是多少?
(3)問原拋物線在第一象限是否存在點P,使得△APB∽△ABC?若存在,請求出這時k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】青島、大連兩個城市各有機床12臺和6臺,現(xiàn)將這些機床運往海南10臺和廈門8臺,每臺費用如表一:
問題1:如表二,假設從青島運往海南臺機床,并且從青島、大連運往海南機床共花費36萬元,求青島運往海南機床臺數(shù).
問題2:在問題1的基礎上,問從青島、大連運往海南、廈門的總費用為多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗、小明練習打字,已知小麗比小明每分鐘多打80個字,小麗打3500個字的時間與小明打2500個字的時間相同.
(1)小麗、小明每分鐘分別可打多少字?
(2)如果有一份總字數(shù)為m的稿件需要輸入電腦,小麗工作了個小時后余下的輸入工作由小明繼續(xù)完成,則小明還需要工作多少小時?(所得結果用含有的代數(shù)式表示;均為大于零的正數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 觀察下列三行數(shù):
2,4,8,16,32,
,1,2,4,8,
1,5,7,17,31,
如圖,第一行數(shù)的第n(n為正整數(shù))個數(shù)用來表示,第二行數(shù)的第n個數(shù)用來表示,第三行數(shù)的第n個數(shù)用來表示
(1)根據(jù)你發(fā)現(xiàn)的規(guī)律,請用含n的代數(shù)式表示數(shù),,的值= ; = ; = ;
(2)取每行的第6個數(shù),計算這三個數(shù)的和
(3)若記為x,求 (結果用含x的式子表示并化簡)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com