【題目】已知:如圖,∠ACB=∠ADB=90°,EAB中點,連接DE、CE、CD

(1)求證:DE=CE;

(2)若∠CAB=25°,∠DBA=35°,判斷△DEC的形狀,并說明理由;

(3)當(dāng)∠CAB+∠DBA=45°時,若CD=12,取CD中點F,求EF的長.

【答案】1)見解析;(2△DEC是等邊三角形,理由見解析;(36

【解析】

1)由直角三角形斜邊上的中線性質(zhì)即可得出結(jié)論;

2)根據(jù)直角三角形的性質(zhì)得到DE=AE=BE=CE,根據(jù)等腰三角形的性質(zhì)得到∠CAB=∠ACE=25°,∠DBA=∠BDE=35°,根據(jù)三角形的外角的性質(zhì)得到∠BED=50°,∠ADE=70°,由等邊三角形的判定定理即可得到結(jié)論;

3)同(2)證出∠DEC=90°,由直角三角形斜邊上的中線性質(zhì)即可得出結(jié)論.

1)證明:∵∠ACB=∠ADB=90°,EAB的中點,

∴DE=AB,CE=AB,

∴DE=CE

2△DEC是等邊三角形,

理由:∵∠ACB=∠ADB=90°,EAB中點,

∴DE=AE=BE=CE,

∴∠CAB=∠ACE=25°,

∠DBA=∠BDE=35°,

∴∠BED=50°∠AED=70°,

∴∠DEC=180°-50°-70°=60°,

∴△DEC是等邊三角形;

3∵∠ACB=∠ADB=90°,EAB中點,

∴DE=AE=BE=CE

∴∠CAB=∠ACE,∠DBA=∠BDE,

∴∠BED=2∠CAB,∠AED=2∠ABD,

∴∠DEC=180°-2∠CAB+∠DBA=90°,

∴△DEC是等腰直角三角形,

F是斜邊CD上的中點,

∴EF=CD=6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“繽紛節(jié)”已經(jīng)成為西南大學(xué)附中一張響亮的名片,受到了社會各界的高度贊揚繽紛意寓繽紛的青春,繽紛的風(fēng)采,繽紛的個性,繽紛的創(chuàng)意,它充分展現(xiàn)了我校學(xué)子的青春與活力.初2020級“知義班”班委計劃給全班學(xué)生購置演出服裝以用于“繽紛節(jié)”晚會的舞臺劇表演經(jīng)與經(jīng)銷商溝通,男生的服裝購置總價為1500元,女生的服裝總價為2000元,由于女生的服裝工藝較復(fù)雜,所以商家最后報出的服裝單價女生比男生貴20元,其中“知義班”男女生人數(shù)相等.

1)請問男女生的表演服裝單價分別為多少元?

2)在看到服裝樣品后,初2020級決定再買120套相同的服裝,與商家溝通后女生服裝的單價比之前降低了20%,男生服裝的單價比之前降低了10%,如果年級購買這120套服裝的費用不超過7300元,那么年級最多可購買多少套女生的服裝?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

= y2+8y+16 (第二步)

=y+42 (第三步)

=x24x+42 (第四步)

回答下列問題:

1)該同學(xué)第二步到第三步運用了因式分解的_______

A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)

若不徹底,請直接寫出因式分解的最后結(jié)果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.

(1)作出△ABD 的邊 BD 上的高.

(2)若△ABC 的面積為 10,求△ADC 的面積.

(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 明天降雨的概率是表示明天有的時間降雨

B. 彩票中獎的概率是表示買張彩票一定會中獎

C. 拋一枚硬幣正面朝上的概率是表示每拋次就有次出現(xiàn)正面朝上

D. 拋一枚普通的正方體骰子,出現(xiàn)朝正面的數(shù)為奇數(shù)的概率是表示如果這個骰子拋很多很多次,那么平均每次就有次出現(xiàn)朝正面的數(shù)為奇數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4張相同的卡片上分別寫有數(shù)字2,3,4,5將卡片的背面向上,洗勻后從中任意抽取1 張,將卡片上的數(shù)字作為被減數(shù);一只不透明的袋子中裝有標(biāo)號2,3,43個小球,這些球除標(biāo)號外都相同,攪勻后從中任意摸出一個球,將摸到的球的標(biāo)號作為減數(shù).

(1)用樹狀圖或列表的方法求這兩個數(shù)的差為0的概率;

(2)如果游戲規(guī)則規(guī)定:當(dāng)抽到的這兩個數(shù)的差為非負數(shù)時,則甲獲勝;否則,乙獲勝,你認為這樣的規(guī)則公平嗎?如果不公平,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】符合下列條件之一的四邊形不一定是菱形的是(

A. 四條邊相等

B. 兩組鄰邊分別相等

C. 對角線相互垂直平分

D. 兩條對角線分別平分一組對角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在等腰直角中,,,將邊繞點順時針旋轉(zhuǎn)得到線段,則的面積為_______

(2)如圖,在直角 中,,,將邊繞點順時針旋轉(zhuǎn)得到線段,連接,求的面積,并說明理由.(用含的式子表示)

(3)如圖,在等腰中,,將邊繞點順時針旋轉(zhuǎn)得到線段,連接,若,則 的面積為 (用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.點P從點A出發(fā),以2cm/s的速度沿邊AB向終點B運動.過點PPQ⊥AB交折線ACB于點QDPQ中點,以DQ為邊向右側(cè)作正方形DEFQ.設(shè)正方形DEFQ△ABC重疊部分圖形的面積是ycm2),點P的運動時間為xs).

1)當(dāng)點Q在邊AC上時,正方形DEFQ的邊長為 cm(用含x的代數(shù)式表示);

2)當(dāng)點P不與點B重合時,求點F落在邊BC上時x的值;

3)當(dāng)0x2時,求y關(guān)于x的函數(shù)解析式;

4)直接寫出邊BC的中點落在正方形DEFQ內(nèi)部時x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案