【題目】如圖,在ABC中,ADBC邊上的高,AEBC邊上的中線,∠C=45°,sinB=, AD=4.

(1)求BC的長(zhǎng);

(2)求tanDAE的值.

【答案】(1) (2)

【解析】

試題(1)先由三角形的高的定義得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=4;解Rt△ADB,得出AB=6,根據(jù)勾股定理求出BD=2,然后根據(jù)BC=BD+DC即可求解;

2)先由三角形的中線的定義求出CE的值,則DE=CE-CD,然后在Rt△ADE中根據(jù)正切函數(shù)的定義即可求解.

試題解析:(1)在△ABC中,∵ADBC邊上的高,

∴∠ADB=∠ADC=90°

△ADC中,∵∠ADC=90°,∠C=45°AD=4,

∴DC=AD=4

△ADB中,∵∠ADB=90°,sinB=,AD=4

∴AB=

∴BD=,

∴BC=BD+DC=

2∵AEBC邊上的中線,

∴CE=BC=,

∴DE=CE-CD=,

∴tan∠DAE=

考點(diǎn): 解直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)在第一象限,為等邊三角形,,垂足為點(diǎn),垂足為

1)求OF的長(zhǎng);

2)作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),連E,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠MON=60°,射線OT是∠MON的平分線,點(diǎn)P是射線OT上的一個(gè)動(dòng)點(diǎn),射線PB交射線ON于點(diǎn)B

(1)如圖,若射線PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)120°后與射線OM交于點(diǎn)A,求證:PAPB;

(2)在(1)的條件下,若點(diǎn)CABOP的交點(diǎn),且滿足,求△POB與△PBC的面積之比;

(3)當(dāng)OB=2時(shí),射線PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)120°后與直線OM交于點(diǎn)A(點(diǎn)A不與點(diǎn)O重合),直線PA交射線ON于點(diǎn)D,且滿足∠PBD=∠ABO,求OP的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB=CD=6cm,BC=10cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/秒的速度沿BC向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒:

1PC=______cm.(用t的代數(shù)式表示)

2)當(dāng)t為何值時(shí),ABP≌△DCP?

3)當(dāng)點(diǎn)P從點(diǎn)B開始運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以v cm/秒的速度沿CD向點(diǎn)D運(yùn)動(dòng),是否存在這樣v的值,使得ABPPQC全等?若存在,請(qǐng)求出v的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABACADBC邊的中線,過點(diǎn)ABC的平行線,過點(diǎn)BAD的平行線,兩線交于點(diǎn)E.

1)求證:四邊形ADBE是矩形;

2)連接DE,交AB于點(diǎn)O,若BC=8,AO=,求cosAED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五邊形的頂點(diǎn)依次編號(hào)為1,2,3,4,5.若從某一頂點(diǎn)開始,沿正五邊形的邊順時(shí)針方向行走,頂點(diǎn)編號(hào)的數(shù)字是幾,就走幾個(gè)邊長(zhǎng),則稱這種走法為一次移位.如:小宇在編號(hào)為3的頂點(diǎn)上時(shí),那么他應(yīng)走3個(gè)邊長(zhǎng),即從3→4→5→1為第一次移位,這時(shí)他到達(dá)編號(hào)為1的頂點(diǎn);然后從1→2為第二次移位.若小宇從編號(hào)為4的頂點(diǎn)開始,第2018移位后,那么他所處的頂點(diǎn)的編號(hào)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)圖象經(jīng)過點(diǎn)A02),且與正比例函數(shù)y=﹣x的圖象交于點(diǎn)B,B點(diǎn)的橫坐標(biāo)是﹣1

1)求該一次函數(shù)的解析式:

2)求一次函數(shù)圖象、正比例函數(shù)圖象與x軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,用三種大小不同的六個(gè)正方形 和一個(gè)缺角的正方形拼成長(zhǎng)方形 ABCD, 其中,GH=2cm, GK=2cm, 設(shè) BF=x cm,

1)用含 x 的代數(shù)式表示 CM= _______cm, DM=_______ cm.

2)若 x=2cm,求長(zhǎng)方形 ABCD 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P.

(1)求證:AP=BQ;

(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中四對(duì)線段,使每對(duì)中較長(zhǎng)線段與較短線段長(zhǎng)度的差等于PQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案