【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(4,﹣ ),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).

(1)求拋物線的解析式及A、B兩點的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最?若存在,求AP+CP的最小值,若不存在,請說明理由;
(3)以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.

【答案】
(1)解:由題意,設(shè)拋物線的解析式為y=a(x﹣4)2 (a≠0)

∵拋物線經(jīng)過(0,2)

∴a(0﹣4)2 =2

解得:a=

∴y= (x﹣4)2

即:y= x2 x+2

當(dāng)y=0時, x2 x+2=0

解得:x=2或x=6

∴A(2,0),B(6,0)


(2)解:存在,如圖2,

由(1)知:拋物線的對稱軸l為x=4,

因為A、B兩點關(guān)于l對稱,連接CB交l于點P,則AP=BP,所以AP+CP=BC的值最小

∵B(6,0),C(0,2)

∴OB=6,OC=2

∴BC=2 ,

∴AP+CP=BC=2

∴AP+CP的最小值為2


(3)解:如圖3,連接ME

∵CE是⊙M的切線

∴ME⊥CE,∠CEM=90°

∵C的坐標(biāo)(0,2),

∴OC=2,

∵AB=4,

∴ME=2

∴OC=ME=2,

∵∠ODC=∠MDE,

∵在△COD與△MED中

∴△COD≌△MED(AAS),

∴OD=DE,DC=DM

設(shè)OD=x

則CD=DM=OM﹣OD=4﹣x

則Rt△COD中,OD2+OC2=CD2,

∴x2+22=(4﹣x)2

∴x=

∴D( ,0)

設(shè)直線CE的解析式為y=kx+b(k≠0),

∵直線CE過C(0,2),D( ,0)兩點,

解得:

∴直線CE的解析式為y=﹣ +2;


【解析】(1)已知頂點坐標(biāo),因此函數(shù)解析式設(shè)成頂點式,再將點C的坐標(biāo)代入即可求得函數(shù)解析式,由y=0,建立方程求解即可得到拋物線與x軸的兩交點坐標(biāo)。
(2)要在拋物線的對稱軸l上求作點P,使AP+CP的值,拋物線是關(guān)于對稱軸對稱,點A關(guān)于直線l的對稱點是點B,因此連接BC交直線l于點P,要求AP+CP的值,可證得AP+CP=BC,再Rt△OBC中根據(jù)勾股定理即可求出BC的長。
(3)由已知點A、B的坐標(biāo)及AB時直徑,可證得OC=ME,即可證明△COD≌△MED,得出OD=DE,DC=DM。運用勾股定理Rt△COD中,求出OD的長,即可求出點D的坐標(biāo),利用待定系數(shù)法,即可直線CE的解析式。
【考點精析】認真審題,首先需要了解確定一次函數(shù)的表達式(確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法),還要掌握切線的性質(zhì)定理(切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(3,0),與y軸交于點C(0,3).

(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)拋物線上的一個動點P的橫坐標(biāo)為t(0<t<0),過點P作PD⊥BC于點D.
①求線段PD的長的最大值;②當(dāng)BD=2CD時,求t的值;
(3)若點Q是拋物線的對稱軸上的動點,拋物線上存在點M,使得以B、C、Q、M為頂點的四邊形為平行四邊形,請求出所有滿足條件的點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)

(1)求這條拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出點Q的坐標(biāo);若不存在說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知經(jīng)過原點的拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=﹣1,下列結(jié)論中: ①ab>0,②a+b+c>0,③當(dāng)﹣2<x<0時,y<0.
正確的個數(shù)是(

A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接中國森博會,某商家計劃從廠家采購A,B兩種產(chǎn)品共20件,產(chǎn)品的采購單價(元/件)是采購數(shù)量(件)的一次函數(shù),下表提供了部分采購數(shù)據(jù).

采購數(shù)量(件)

1

2

A產(chǎn)品單價(元/件)

1480

1460

B產(chǎn)品單價(元/件)

1290

1280


(1)設(shè)A產(chǎn)品的采購數(shù)量為x(件),采購單價為y1(元/件),求y1與x的關(guān)系式;
(2)經(jīng)商家與廠家協(xié)商,采購A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的 ,且A產(chǎn)品采購單價不低于1200元,求該商家共有幾種進貨方案;
(3)該商家分別以1760元/件和1700元/件的銷售單價售出A,B兩種產(chǎn)品,且全部售完,在(2)的條件下,求采購A種產(chǎn)品多少件時總利潤最大,并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“你最喜歡哪種學(xué)習(xí)方式”隨機調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下兩個不完整的統(tǒng)計圖(如圖).

請根據(jù)上面兩個不完整的統(tǒng)計圖回答以下4個問題:

(1)這次抽樣調(diào)查中,共調(diào)查了_____名學(xué)生.

(2)補全條形統(tǒng)計圖中的缺項.

(3)在扇形統(tǒng)計圖中,選擇教師傳授的占_____%,選擇小組合作學(xué)習(xí)的占_____%.

(4)根據(jù)調(diào)查結(jié)果,估算該校1800名學(xué)生中大約有_____人選擇小組合作學(xué)習(xí)模式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有某種海產(chǎn)品2104千克,尋求合適價格,進行8天試銷,情況如下:

第幾天

1

2

3

4

5

6

7

8

銷售價格(元/千克)

400

A

250

240

200

150

125

120

銷售量(千克)

30

40

48

B

60

80

96

100

觀察表中數(shù)據(jù),發(fā)現(xiàn)可以用某種函數(shù)刻畫這種海產(chǎn)品的每天銷售量y(千克)與銷售價格x(元/千克)之間的關(guān)系. 現(xiàn)假設(shè)這批海產(chǎn)品的銷售中,每天銷售量y(千克)與銷售價格x(元/千克)之間都滿足這一關(guān)系.

1)猜想函數(shù)關(guān)系式: . (不必寫出自變量的取值)并寫出表格中A= B= ;

2)試銷8天后,公司決定將售價定為150/千克. 則余下海產(chǎn)品預(yù)計 天可全部售出;

3)按(2)中價格繼續(xù)銷售15天后,公司發(fā)現(xiàn)剩余海產(chǎn)品必須在不超過2天內(nèi)全部售出,此時需要重新確定一個銷售價格,使后面兩天都按新價格銷售,那么新確定的價格最高不超過多少元/千克才能完成銷售任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:

(1)如圖1,已知點A,點B,點C,直線ll上一點M,請你按照下列要求畫出圖形.

①畫射線BM;

②畫線段AC,并取線段AC的中點N;

③請在直線l上確定一點O,使點O到點A與點B的距離之和(OA+OB)最。

(2)5個大小一樣的正方形制成如圖2所示的拼接圖形(陰影部分),請你在圖中的拼接圖形上再接一個正方形,使新拼接成的圖形經(jīng)過折疊后能成為一個封閉的正方體盒子,(只需添加一個符合要求的正方形即可,并用陰影表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:四邊形ABCD中,AB=2,CD=3,M、N分別是AD,BC的中點,則線段MN的取值范圍是( 。

A. 1<MN<5 B. 1<MN≤5 C. <MN< D. <MN≤

查看答案和解析>>

同步練習(xí)冊答案