【題目】如圖1,在平面直角坐標系中,P(3,3),點A、B分別在x軸正半軸和y軸負半軸上,且PA=PB.
(1)求證:PA⊥PB;
(2)若點A(9,0),則點B的坐標為 ;
(3)當點B在y軸負半軸上運動時,求OA﹣OB的值;
(4)如圖2,若點B在y軸正半軸上運動時,直接寫出OA+OB的值.
【答案】(1)詳見解析;(2)(0,﹣3);(3)6;(4)6.
【解析】
(1)過點P作PE⊥x軸于E,作PF⊥y軸于F,根據點P的坐標可得PE=PF=2,然后利用“HL”證明Rt△APE和Rt△BPF全等,根據全等三角形對應角相等可得∠APE=∠BPF,然后求出∠APB=∠EPF=90°,再根據垂直的定義證明;
(2)求出AE的長度,再根據全等三角形對應邊相等可得AE=BF,然后求出OB,再寫出點B的坐標即可;
(3)根據全等三角形對應邊相等可得PE=PF,再表示出PE、PF,然后列出方程整理即可得解;
(4)同(3)的思路求解即可.
(1)證明:如圖1,過點P作PE⊥x軸于E,作PF⊥y軸于F,
∵P(3,3),
∴PE=PF=3,
在Rt△APE和Rt△BPF中,
∴Rt△APE≌Rt△BPF(HL),
∴∠APE=∠BPF,
∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,
∴PA⊥PB;
(2)解:由(1)證得,Rt△APE≌Rt△BPF,
∴PF=PE,
∴四邊形OEPF是正方形,
∴OE=OF=4,
∵A(9,0),
∴OA=9,
∴AE=OA﹣OE=9﹣3=6,
∵Rt△APE≌Rt△BPF,
∴AE=BF=6,
∴OB=BF﹣OF=6﹣3=3,
∴點B的坐標為(0,﹣3),
故答案為:(0,﹣3);
(3)解:∵Rt△APE≌Rt△BPF,
∴AE=BF,
∵AE=OA﹣OE=OA﹣3,
BF=OB+OF=OB+3,
∴OA﹣3=OB+3,
∴OA﹣OB=6;
(4)解:如圖2,過點P作PE⊥x軸于E,作PF⊥y軸于F,
同(1)可得,Rt△APE≌Rt△BPF,
∴AE=BF,
∵AE=OA﹣OE=OA﹣3,
BF=OF﹣OB=3﹣OB,
∴OA﹣3=3﹣OB,
∴OA+OB=6.
科目:初中數學 來源: 題型:
【題目】(9分)如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若A的對應點A2的坐標為(0,4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2,請直接寫出旋轉中心的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于(2,0)、(1,0),與y軸交于C,直線l1經過點C且平行于x軸,與拋物線的另一個交點為D,將直線l1向下平移t個單位得到直線l2,l2與拋物線交于A、B兩點.
(1)求拋物線解析式及點C的坐標;
(2)當t=2時,探究△ABC的形狀,并說明理由;
(3)在(2)的條件下,點M(m,0)在x軸上自由運動,過M作MN⊥x軸,交直線BC于P,交拋物線于N,若三個點M、N、P中恰有一個點是其他兩個點連線段的中點(三點重合除外),則稱M、N、P三點為“共諧點”,請直接寫出使得M、P、N三點為“共諧點”的m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,∠B=∠C=90 ,M是BC的中點,DM平分∠ADC.
(1)若連接AM,則AM是否平分∠BAD?請你證明你的結論;
(2)線段DM與AM有怎樣的位置關系?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,根據要求回答下列問題:
(1)點A關于y軸對稱點A′的坐標是 ;點B關于y軸對稱點B′的坐標是
(2)作出△ABC關于y軸對稱的圖形△A′B′C′(不要求寫作法)
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點,AC為⊙O的直徑,弦BD⊥AC下列結論:①∠P+∠D=180°;②∠COB=∠DAB;③∠DBA=∠ABP;④∠DBO=∠ABP.其中正確的只有( 。
A. ①③ B. ②④ C. ②③ D. ①④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,C是AB上一點,點D,E分別在AB兩側,AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C,AB=8,BC=6,點D為AB的中點,點P在線段BC上以每秒2個單位的速度由點B向點C運動,同時點Q在線段CA上以每秒a個單位的速度由點C向點A運動,設運動時間為t(秒)(0≤t≤3).
(1)用含t的代數式表示線段PC的長;
(2)若點P、Q的運動速度相等,t=1時,△BPD與△CQP是否全等,請說明理由.
(3)若點P、Q的運動速度不相等,△BPD與△CQP全等時,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,矩形ABCD中,AB=8,AD=6;點E是對角線BD上一動點,連接CE,作EF⊥CE交AB邊于點F,以CE和EF為鄰邊作矩形CEFG,作其對角線相交于點H.
(1)①如圖2,當點F與點B重合時,CE= ,CG= ;
②如圖3,當點E是BD中點時,CE= ,CG= ;
(2)在圖1,連接BG,當矩形CEFG隨著點E的運動而變化時,猜想△EBG的形狀?并加以證明;
(3)在圖1,的值是否會發(fā)生改變?若不變,求出它的值;若改變,說明理由;
(4)在圖1,設DE的長為x,矩形CEFG的面積為S,試求S關于x的函數關系式,并直接寫出x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com