【題目】豎直上拋的小球離地高度是它運(yùn)動時(shí)間的二次函數(shù),小軍相隔1秒依次豎直向上拋出兩個(gè)小球,假設(shè)兩個(gè)小球離手時(shí)離地高度相同,在各自拋出后1.1秒時(shí)到達(dá)相同的最大離地高度,第一個(gè)小球拋出后秒時(shí)在空中與第二個(gè)小球的離地高度相同,則_____

【答案】1.6

【解析】

設(shè)各自拋出后1.1秒時(shí)到達(dá)相同的最大離地高度為h,這個(gè)最大高度為h,則小球的高度y=at-1.12+h,根據(jù)題意列出方程即可解決問題.

解:設(shè)各自拋出后1.1秒時(shí)到達(dá)相同的最大離地高度為h,這個(gè)最大高度為h,則小球的高度y=at-1.12+h

由題意at-1.12+h=at-1-1.12+h,

解得t=1.6

所以第一個(gè)小球拋出后1.6秒時(shí)在空中與第二個(gè)小球的離地高度相同.

故答案為1.6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“圓材埋壁”是我國古代著名的數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長六寸,問徑幾何?”用現(xiàn)代的數(shù)學(xué)語言表述是:“CD的直徑,弦,垂足為ECE=1寸,AB=10寸,求直徑CD的長”,依題意得CD的長為(

A.12B.13C.24D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市中招體育測試改革,其中籃球和足球作為選考項(xiàng)目,某商店抓住這一商機(jī)決定購進(jìn)一批籃球和足球共200個(gè),這兩種球的進(jìn)價(jià)和售價(jià)如下表所示:

籃球

足球

進(jìn)價(jià)(元/個(gè))

180

150

售價(jià)(元/個(gè))

250

200

1)若商店計(jì)劃銷售完這批球后能獲利11600元,問籃球和足球應(yīng)分別購進(jìn)多少個(gè)?

2)設(shè)購進(jìn)籃球個(gè),獲利為元,求之間的函數(shù)關(guān)系;

3)若商店計(jì)劃投入資金不多于31560元且銷售完這批球后商店獲利不少于11000元,請問有哪幾種購球方案,并寫出獲利最大的購球方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個(gè)等級,并將結(jié)果繪制成圖1的條形統(tǒng)計(jì)圖和圖2扇形統(tǒng)計(jì)圖,但均不完整.請你根據(jù)統(tǒng)計(jì)圖解答下列問題:

1)求參加比賽的學(xué)生共有多少名?并補(bǔ)全圖1的條形統(tǒng)計(jì)圖.

2)在圖2扇形統(tǒng)計(jì)圖中,m的值為_____,表示“D等級”的扇形的圓心角為_____度;

3)組委會決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,三點(diǎn),其中,曲線分別與線段,交于點(diǎn),

1)當(dāng)時(shí),求點(diǎn)的坐標(biāo);

2)當(dāng)時(shí),求的面積;

3)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù).

三等分任意角問題是數(shù)學(xué)史上一個(gè)著名的問題,直到1837年,數(shù)學(xué)家才證明了三等分任意角是不能用尺規(guī)完成的.

在探索中,出現(xiàn)了不同的解決問題的方法

方法一:

如圖(1),四邊形ABCD是矩形,FDA延長線上一點(diǎn),GCF上一點(diǎn),CFAB交于點(diǎn)E,且∠ACG=∠AGC,∠GAF=∠F,此時(shí)∠ECBACB

方法二:

數(shù)學(xué)家帕普斯借助函數(shù)給出一種三等分銳角的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標(biāo)系中,邊OBx軸上,邊OA與函數(shù)y的圖象交于點(diǎn)P,以點(diǎn)P為圓心,以2OP長為半徑作弧交圖象于點(diǎn)R.過點(diǎn)Px軸的平行線,過點(diǎn)Ry軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠AOB,過點(diǎn)PPHx軸于點(diǎn)H,過點(diǎn)RRQPH于點(diǎn)Q,則∠MOBAOB

1)在方法一中,若∠ACF40°,GF4,求BC的長.

2)完成方法二的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)興趣小組想利用所學(xué)的知識了解某廣告牌的高度,已知CD2m.經(jīng)測量,得到其它數(shù)據(jù)如圖所示.其中∠CAH37°,∠DBH67°,AB10m,請你根據(jù)以上數(shù)據(jù)計(jì)算GH的長.(參考數(shù)據(jù),,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點(diǎn)EAD邊上,點(diǎn)FAD的延長線上,且BE=CF.

(1)求證:四邊形EBCF是平行四邊形.

(2)若BEC=90°,ABE=30°,AB=,求ED的長.

查看答案和解析>>

同步練習(xí)冊答案