【題目】如圖,在△ABC中,點DBC邊上的一點,∠B=50°,∠BAD=30°,將△ABD沿AD折疊得到△AED,AEBC交于點F.

1)填空:∠ADC= 度;

2)當∠C=20°時,判斷DEAC的位置關(guān)系,并說明理由。

【答案】(1)80;(2)DEAC,理由見解析.

【解析】

(1)根據(jù)三角形一個外角等于它不相鄰兩個內(nèi)角之和,即可得出答案;

(2)∠ADC=80°,可以求得∠ADB=100°,由△ABD沿AD折疊得到△AED,可得∠ADE=∠ADB=100°,繼而根據(jù)三角形外角的性質(zhì)可求得∠EDF=20°,繼而可得∠EDF∠C,從而可得DE∥AC.

(1)ADC=∠B+∠BAD=50°+30°=80°,

故答案為:80;

(2)DE∥AC,理由如下:

∵∠B=50°,∠BAD=30°,

∴∠ADC=50°+30°=80°

∠ADB=180°-∠ADC=100°,

∵△ABD沿AD折疊得到△AED,

∴∠ADE=∠ADB=100°,

∴∠EDF=∠ADE -∠ADF=100°-80°=20°

∵∠C=20°,

∴∠EDF∠C

∴DE∥AC.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BC=5,AC=12,M為斜邊AB上一動點,過M作MD⊥AC,過M作ME⊥CB于點E,則線段DE的最小值為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】材料閱讀:如圖①所示的圖形,像我們常見的學習用品圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖”.

解決問題:

1)觀察規(guī)形圖,試探究,之間的數(shù)量關(guān)系,并說明理由;

2)請你直接利用以上結(jié)論,解決以下兩個問題:

.如圖②,把一塊三角尺放置在上,使三角尺的兩條直角邊,恰好經(jīng)過點,若,則_____.

.如圖③,平分,平分,若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年10,某公司隨機抽取所屬的a家連鎖店進行評估將各連鎖店按照評估成績分成了A、BC、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表

根據(jù)以上信息解答下列問題

(1)求a的值;

(2)在扇形統(tǒng)計圖中B等級所在扇形的圓心角的大小;(結(jié)果用度、分、秒表示)

(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).

(1)畫出ABC關(guān)于原點O成中心對稱的A1B1C1;

(2)寫出A1B1C1的頂點坐標;

(3)求出A1B1C1的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB的一邊OA為平面鏡,∠AOB37°,在OB上有一點E,從E點射出一束光線經(jīng)OA上一點D反射,此時∠ODE=∠ADC,且反射光線DC恰好與OB平行,則∠DEB的度數(shù)是___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校數(shù)學興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,兩個建筑物ABCD的水平距離為30m,張明同學住在建筑物AB內(nèi)10P室,他觀測建筑物CD樓的頂部D處的仰角為30°,測得底部C處的俯角為45°,求建筑物CD的高度.(1.73,結(jié)果保留整數(shù).)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長為1,網(wǎng)格中有一個格點ABC(即三角形的頂點都在格點上)

1)在圖中作出ABC關(guān)于直線1對稱的A1B1C1;(要求:AA1、BB1CC1相對應(yīng));

2)在第(1)問的結(jié)果下,連結(jié)BB1,CC1,求四邊形BB1C1C的面積;

3)在圖中作出ABC關(guān)于點C成中心對稱的A2CB2

查看答案和解析>>

同步練習冊答案