【題目】如圖,在Rt△ABC中,∠A=90°,BC=2.以BC的中點(diǎn)O為圓心的圓分別與AB,AC相切于D,E兩點(diǎn),則弧DE的長(zhǎng)為( ).
A.B.C.D.π
【答案】C
【解析】
連接OE、OD,由切線的性質(zhì)可知OE⊥AC,OD⊥AB,又由∠A=90°可得四邊形AEOD是矩形,得出∠DOE=90°,由于O是BC的中點(diǎn),從而可知OD是中位線,所以可知∠B=45°,從而可知半徑r的值,最后利用弧長(zhǎng)公式即可求出答案.
解:連接OE、OD,
設(shè)半徑為r,
∵⊙O分別與AB,AC相切于D,E兩點(diǎn),
∴OE⊥AC,OD⊥AB,
∵∠A=90°,
∴四邊形AEOD是矩形,
∴∠DOE=90°,
∵O是BC的中點(diǎn),
∴OD是中位線,
∴OD=AE=AC,
∴AC=2r,
同理可知:AB=2r,
∴AB=AC,
∴∠B=45°,
∵BC=,
∴由勾股定理可知AB=2,
∴r=1,
∴==.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)僅用無刻度的直尺分別按下列要求畫圖(保留畫圖痕跡).
(1)如圖1,拋物線l與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,作出拋物線的對(duì)稱軸EF;
(2)如圖2,拋物線l1,l2交于點(diǎn)P且關(guān)于直線MN對(duì)稱,兩拋物線分別交x軸于點(diǎn)A,B和點(diǎn)C,D,作出直線MN .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為等邊三角形ABC內(nèi)一點(diǎn),連接OA,OB,OC,將線段BO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到BM,連接CM,OM.
(1)求證:AO=CM;
(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象回答下列問題:
(1)點(diǎn)B的坐標(biāo)為 ;
(2)y隨x的增大而減小的自變量x的取值范圍為 ;
(3)方程ax2+bx+c=0的兩個(gè)根為 ;
(4)不等式ax2+bx+c<0的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知k為實(shí)數(shù),關(guān)于x的方程為x2+(k+2)x+2k=1.
(1)判斷方程有無實(shí)數(shù)根.
(2)當(dāng)方程的根和k都是有理數(shù)時(shí),請(qǐng)直接寫出其中k的1個(gè)值和相應(yīng)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,中線BE、CD相交于點(diǎn)O,連接DE,下列結(jié)論:①;②;③;④;其中正確的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A,動(dòng)直線x=t(0<t<8)與反比例函數(shù)的圖象交于點(diǎn)M,與直線AB交于點(diǎn)N.
(1)求k的值;
(2)當(dāng)t=4時(shí),求△BMN面積;
(3)若MA⊥AB,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點(diǎn)M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動(dòng)點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動(dòng),經(jīng)過t秒,以點(diǎn)P為圓心,cm為半徑的圓與△ABC的邊相切(切點(diǎn)在邊上),請(qǐng)寫出t可取的一切值 (單位:秒)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com