【題目】如圖,已知正方形ABCD,頂點(diǎn)A(1,3)、B(1,1)、C(3,1).規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移一個單位”為一次變換.如此這樣,連續(xù)經(jīng)過2018次變換后,正方形ABCD的對角線交點(diǎn)M的坐標(biāo)為( )
A. (2018,2) B. (2018,﹣2) C. (﹣2016,2) D. (2016,2)
【答案】C
【解析】分析:根據(jù)正方形的性質(zhì),結(jié)合正方形四個頂點(diǎn)的坐標(biāo)求出對角線點(diǎn)M的坐標(biāo);然后根據(jù)第1次變換后的點(diǎn)M的對應(yīng)點(diǎn)的坐標(biāo)為(2-1,-2),即(1,-2),第2次變換后的點(diǎn)M的對應(yīng)點(diǎn)的坐標(biāo)為:(2-2,2),即(0,2),第3次變換后的點(diǎn)M的對應(yīng)點(diǎn)的坐標(biāo)為(2-3,-2),即(-1,-2),第n次變換后的點(diǎn)M的對應(yīng)點(diǎn)的為:當(dāng)n為奇數(shù)時為(2-n,-2),當(dāng)n為偶數(shù)時為(2-n,2);最后利用找到的規(guī)律求出經(jīng)過2018次變換后,正方形對角線交點(diǎn)M的坐標(biāo)即可.
詳解:∵正方形ABCD,頂點(diǎn)A(1,3)、B(1,1)、C(3,1),
∴對角線交點(diǎn)M的坐標(biāo)為(2,2),
根據(jù)題意得:第1次變換后的點(diǎn)M的對應(yīng)點(diǎn)的坐標(biāo)為(2-1,-2),即(1,-2),
第2次變換后的點(diǎn)M的對應(yīng)點(diǎn)的坐標(biāo)為:(2-2,2),即(0,2),
第3次變換后的點(diǎn)M的對應(yīng)點(diǎn)的坐標(biāo)為(2-3,-2),即(-1,-2),
第n次變換后的點(diǎn)M的對應(yīng)點(diǎn)的為:當(dāng)n為奇數(shù)時為(2-n,-2),當(dāng)n為偶數(shù)時為(2-n,2),
∴連續(xù)經(jīng)過2018次變換后,正方形ABCD的對角線交點(diǎn)M的坐標(biāo)變?yōu)椋?/span>-2016,2).
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,窗簾的褶皺是指按照窗戶的實(shí)際寬度將窗簾布料以一定比例加寬的做法,褶皺之后的窗簾更能彰顯其飄逸、靈動的效果.其中,窗寬度的1.5倍為平褶皺,窗寬度的2倍為波浪褶皺.如圖②,小莉房間的窗戶呈長方形,窗戶的寬度(AD)比高度(AB)的少0.5m,某種窗簾的價格為120元/m2.如果以波浪褶皺的方式制作該種窗簾比以平褶皺的方式費(fèi)用多180元,求小莉房間窗戶的寬度與高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,AB=6,AC=8,點(diǎn)D為邊BC的中點(diǎn),DE⊥BC交邊AC于點(diǎn)E,點(diǎn)P為射線AB上一動點(diǎn),點(diǎn)Q為邊AC上一動點(diǎn),且∠PDQ=90°.
(1)求ED、EC的長;
(2)若BP=2,求CQ的長;
(3)記線段PQ與線段DE的交點(diǎn)為點(diǎn)F,若△PDF為等腰三角形,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小昊遇到這樣一個問題:如圖1,在△ABC中,∠ACB=90°,BE是AC邊上的中線,點(diǎn)D在BC邊上,CD:BD=1:2,AD與BE相交于點(diǎn)P,求的值.
小昊發(fā)現(xiàn),過點(diǎn)A作AF∥BC,交BE的延長線于點(diǎn)F,通過構(gòu)造△AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).請回答:的值為 .
參考小昊思考問題的方法,解決問題:
如圖 3,在△ABC中,∠ACB=90°,點(diǎn)D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點(diǎn)P,DC:BC:AC=1:2:3 .
(1)求的值;
(2)若CD=2,則BP=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電業(yè)部門每月都按時取居民家查電表,電表讀數(shù)與上次讀數(shù)的差就是這段時間內(nèi)用電的千瓦時數(shù).上月初小亮家電表顯示的度數(shù)為,本月初電表顯示的讀數(shù)為.
(1)小亮家上月用電多少千瓦時?
(2)如果每千瓦時的電費(fèi)為元,全月的電費(fèi)為(元),那么上月小亮家應(yīng)繳費(fèi)電費(fèi)與本月初電表顯示讀數(shù)之間的關(guān)系式是什么?
(3)在問題(2)中,哪些量是常量?哪些量是變量?是哪個變量的函數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①,②,③三個條件中選出兩個作為已知條件,另一個作為結(jié)論可以組成3個命題.
(1)這三個命題中,真命題的個數(shù)為________;
(2)選擇一個真命題,并且證明.(要求寫出每一步的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)45°時,如圖3,延長DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時,求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過點(diǎn)E作EC⊥OA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長線于點(diǎn)D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com