【題目】某商場為了吸引顧客,舉行抽獎(jiǎng)活動(dòng),并規(guī)定:顧客每購買100元的商品,就可隨機(jī)抽取一張獎(jiǎng)券,抽得獎(jiǎng)券“紫氣東來”、“花開富貴”、“吉星高照”,就可以分別獲得100元、50元、20元的購物券,抽得“謝謝惠顧”不贈(zèng)購物券;如果顧客不愿意抽獎(jiǎng),可以直接獲得購物券10元。小明購買了100元的商品,他看到商場公布的前10000張獎(jiǎng)券的抽獎(jiǎng)結(jié)果如下:

獎(jiǎng)券種類

紫氣東來

花開富貴

吉星高照

謝謝惠顧

出現(xiàn)張數(shù)(張)

500

1000

2000

6500


(1)求“紫氣東來”獎(jiǎng)券出現(xiàn)的頻率;
(2)請(qǐng)你幫助小明判斷,抽獎(jiǎng)和直接獲得購物卷,哪種方式更合算?并說明理由。

【答案】
(1)解: = 或5%
(2)解:平均每張獎(jiǎng)券獲得的購物券金額為:100× +50× +20× +0× =14(元),
∵14>10,
∴選擇抽獎(jiǎng)更合算。
【解析】(1)頻率=頻數(shù)數(shù)據(jù)總數(shù);(2)利用加權(quán)平均數(shù),可以算出平均購物券為14>10,因此選擇抽獎(jiǎng)更合算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線AB、CD、EF相交于點(diǎn)O,∠AOE=40°,∠BOC=2∠AOC,求∠DOF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,點(diǎn)ECB的延長線上,連結(jié)AC、AE,ACB=BAE=45°

1)求證:AE是⊙O的切線;

2)若AB=AD,AC=,tanADC=3BE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9x3y2+12x2y2—6xy3中各項(xiàng)的公因式是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以正方形ABCD的對(duì)角線BD為邊作菱形BDEF,當(dāng)點(diǎn)A,E,F在同一直線上時(shí),F的正切值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC,AC3cmACB90°,ABC60°,將ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)至ABC,點(diǎn)C′在直線AB上,則邊AC掃過區(qū)域(圖中陰影部分)的面積為____________cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場設(shè)了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤如圖,并規(guī)定:顧客購物10元以上就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一區(qū)域就可以獲得相應(yīng)的獎(jiǎng)品.下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
(1)計(jì)算并完成表格:

轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n

100

150

200

500

800

1000

落在鋼筆的次數(shù)m

68

111

136

345

564

701

落在鋼筆的頻率


(2)請(qǐng)估計(jì),當(dāng)n很大時(shí),頻率將會(huì)接近多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象在第一象限相交于點(diǎn)A(6,n),與x軸相交于點(diǎn)B

1填空:n的值為 k的值為 ;當(dāng)y24時(shí),x的取值范圍是

2)以AB為邊作菱形ABCD,使點(diǎn)C在點(diǎn)B右側(cè)的x軸上,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校車安全是近幾年社會(huì)關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道L上確定點(diǎn)D,使CDL垂直,測(cè)得CD的長等于24米,在L上點(diǎn)D的同側(cè)取點(diǎn)AB,使∠CAD=30°,∠CBD=60°.

(1)求AB的長(結(jié)果保留根號(hào));

(2)已知本路段對(duì)校車限速為45千米/小時(shí),若測(cè)得某輛校車從AB用時(shí)2秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.73,≈1.41)

查看答案和解析>>

同步練習(xí)冊(cè)答案