【題目】如圖,已知線段AB、a、b

1)請(qǐng)用尺規(guī)按下列要求作圖:(不要求寫作法,但要保留作圖痕跡)

延長(zhǎng)線段ABC,使BCa;

反向延長(zhǎng)線段ABD,使ADb

2)在(1)的條件下,如果AB8cma6m,b10cm,且點(diǎn)ECD的中點(diǎn),求線段AE的長(zhǎng)度.

【答案】1)①見解析;②見解析;(2AE2cm

【解析】

1)根據(jù)題意畫出圖形即可;

2)根據(jù)線段的畫出和線段的中點(diǎn)的定義即可得到結(jié)論.

1如圖所示,線段BC即為所求,

如圖所示,線段AD即為所求;

2AB8cm,a6m,b10cm,

CD8+6+1024cm

點(diǎn)ECD的中點(diǎn),

DEDC12cm,

AEDEAD12102cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓外,AC,BC與半圓交于D點(diǎn)和E點(diǎn).

1)請(qǐng)只用無(wú)刻度的直尺作出ABC的兩條高線,并寫出作法;

2)若AC=AB,連接DEBE,求證:DE=BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1C為線段 AB上一點(diǎn),以 ACBC為一邊,在 AB同側(cè)做長(zhǎng)方形 ACDE和長(zhǎng)方形 CBFG,且 滿足 AC=2AE,CB=2BF,記 AC2a,BC2b(a b) .

1)記長(zhǎng)方形 ACDE的面積為 s1 ,長(zhǎng)方形 CBFG的面積為 s2 . AB6, a2b ,求 s1 s2 .

2)如圖 2,點(diǎn) P是線段 CA上的動(dòng)點(diǎn).

①當(dāng)點(diǎn) P從點(diǎn) C向左移動(dòng)個(gè)單位后,求EAPFBP的面積之差.

②當(dāng)點(diǎn) P從點(diǎn) C向左移動(dòng) 個(gè)單位后,EAPFBP的面積之差記為 m1 ; 當(dāng)點(diǎn) P從點(diǎn) C向左移動(dòng) (a b) 個(gè)單位后,EAPFBP的面積之差記為 m2 ,求 的值(結(jié)果用含 n 的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程

(1)求證:對(duì)于任意實(shí)數(shù)m,方程總有兩個(gè)不相等的實(shí)數(shù)根

(2)若方程的一個(gè)根是1,求m的值及方程的另一個(gè)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)長(zhǎng)方體的表面展開圖,每個(gè)外表面都標(biāo)注了字母,請(qǐng)根據(jù)要求回答問(wèn)題:

(1)如果面A在多面體的底部,那么哪一個(gè)面會(huì)在上面?

(2)如果面F在前面,從左面看是面B,那么哪一個(gè)面會(huì)在上面?

(3)如果從右面看是面C,面D在后面,那么哪一個(gè)面會(huì)在上面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形A1B1C1OA2B2C2C1,A3B3C3C2按如圖的方式放置.點(diǎn)A1,A2A3,和點(diǎn)C1,C2C3,分別在直線y=x+1x軸上,則點(diǎn)B6的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BAx軸,AC是射線.

1)若小李11月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?

2)當(dāng)x≥30,求yx之間的函數(shù)關(guān)系式;

3)若小李12月份上網(wǎng)費(fèi)用為135元,則他在該月份的上網(wǎng)時(shí)間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從地面B處測(cè)得熱氣球A的仰角為45°,從地面C處測(cè)得熱氣球A的仰角為30°,若BC240米,求:熱氣球A的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yx 2mx(m為常數(shù)),當(dāng)-1≤x≤2時(shí),函數(shù)y的最小值為-2,則m的值是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案