如圖1,在平面直角坐標系中,已知△AOB是等邊三角形,點A的坐標是(0,4),點B在第一象限,點P是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉,使邊AO與AB重合,得到△ABD.
(1)求直線AB的解析式;
(2)當點P運動到點(,0)時,求此時DP的長及點D的坐標;
(3)是否存在點P,使△OPD的面積等于?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.

【答案】分析:(1)過點B作BE⊥y軸于點E,作BF⊥x軸于點F.依題意得BF=OE=2,利用勾股定理求出OF,然后可得點B的坐標.設直線AB的解析式是y=kx+b,把已知坐標代入可求解.
(2)由△ABD由△AOP旋轉得到,證明△ABD≌△AOP.AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等邊三角形.利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函數(shù)求出BG=BD•cos60°,DG=BD•sin60°.然后求出OH,DH,然后求出點D的坐標.
(3)本題分三種情況進行討論,設點P的坐標為(t,0):
①當P在x軸正半軸上時,即t>0時,關鍵是求出D點的縱坐標,方法同(2),在直角三角形DBG中,可根據(jù)BD即OP的長和∠DBG的正弦函數(shù)求出DG的表達式,即可求出DH的長,根據(jù)已知的△OPD的面積可列出一個關于t的方程,即可求出t的值.
②當P在x軸負半軸,但D在x軸上方時.即<t≤0時,方法同①類似,也是在直角三角形DBG用BD的長表示出DG,進而求出GF的長,然后同①.
③當P在x軸負半軸,D在x軸下方時,即t≤時,方法同②.
綜合上面三種情況即可求出符合條件的t的值.
解答:解:(1)如圖1,過點B作BE⊥y軸于點E,作BF⊥x軸于點F.由已知得:
BF=OE=2,OF==,
∴點B的坐標是(,2)
設直線AB的解析式是y=kx+b(k≠0),則有
解得
∴直線AB的解析式是y=x+4;

(2)如圖2,∵△ABD由△AOP旋轉得到,
∴△ABD≌△AOP,
∴AP=AD,∠DAB=∠PAO,
∴∠DAP=∠BAO=60°,
∴△ADP是等邊三角形,
∴DP=AP=
如圖2,過點D作DH⊥x軸于點H,延長EB交DH于點G,則BG⊥DH.
方法(一)
在Rt△BDG中,∠BGD=90°,∠DBG=60°.
∴BG=BD•cos60°=×=
DG=BD•sin60°=×=
∴OH=EG=,DH=
∴點D的坐標為(
方法(二)
易得∠AEB=∠BGD=90°,∠ABE=∠BDG,∴△ABE∽△BDG,
;而AE=2,BD=OP=,BE=2,AB=4,
則有,解得BG=,DG=;
∴OH=,DH=;
∴點D的坐標為(,).

(3)假設存在點P,在它的運動過程中,使△OPD的面積等于
設點P為(t,0),下面分三種情況討論:
①當t>0時,如圖,BD=OP=t,DG=t,
∴DH=2+t.
∵△OPD的面積等于,
,
解得,(舍去)
∴點P1的坐標為(,0).
②∵當D在x軸上時,根據(jù)勾股定理求出BD==OP,
∴當<t≤0時,如圖,BD=OP=-t,DG=-t,
∴GH=BF=2-(-t)=2+t.
∵△OPD的面積等于,

解得,,
∴點P2的坐標為(,0),點P3的坐標為(,0).
③當t≤時,如圖3,BD=OP=-t,DG=-t,

∴DH=-t-2.
∵△OPD的面積等于,
(-t)【-(2+t)】=
解得(舍去),
∴點P4的坐標為(,0),
綜上所述,點P的坐標分別為P1,0)、P2,0)、P3,0)、
P4,0).
點評:本題綜合考查的是一次函數(shù)的應用,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源:同步輕松練習 八年級 數(shù)學 上 題型:059

學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年北京海淀區(qū)九年級第一學期期中測評數(shù)學試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當點為旋轉中心時,點繞著點旋轉180°得到點,點再繞著點旋轉180°得到點,這時點與點重合.

如圖2,當點、為旋轉中心時,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,小明發(fā)現(xiàn)P、兩點關于點中心對稱.

(1)請在圖2中畫出點、, 小明在證明P、兩點關于點中心對稱時,除了說明P、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當、為旋轉中心時,點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習冊答案