【題目】某片果園有果樹(shù)80棵,現(xiàn)準(zhǔn)備多種一些果樹(shù)提高果園產(chǎn)量,但是如果多種樹(shù),那么樹(shù)之間的距離和每棵樹(shù)所受光照就會(huì)減少,單棵樹(shù)的產(chǎn)量隨之降低.若該果園每棵果樹(shù)產(chǎn)果y(千克),增種果樹(shù)x(棵),它們之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式.
(2)在投入成本最低的情況下,增種果樹(shù)多少棵時(shí),果園可以收獲果實(shí)7000千克.
(3)當(dāng)增種果樹(shù)多少棵時(shí),果園的總產(chǎn)量w(千克)最大?此時(shí)每棵果樹(shù)的產(chǎn)量是多少?
【答案】(1)y=﹣x+80;(2)增種果樹(shù)20棵時(shí),果園可以收獲果實(shí)7000千克;(3)當(dāng)增種果樹(shù)40棵時(shí),果園的總產(chǎn)量最大.每顆果樹(shù)的產(chǎn)量為60千克.
【解析】
(1)根據(jù)該果園每棵果樹(shù)產(chǎn)果y(千克),增種果樹(shù)x(棵),它們之間的函數(shù)關(guān)系如圖所示即可求解;
(2)根據(jù)(1)中求得的函數(shù)關(guān)系式,代入7000千克,即可求解;
(3)確定出二次函數(shù)的解析式,然后確定其最大值,實(shí)際問(wèn)題中自變量x的取值要使實(shí)際問(wèn)題有意義.
解:(1)根據(jù)題中的圖可以看出,y與x為一次函數(shù)的關(guān)系,
設(shè)函數(shù)關(guān)系式為y=kx+b,將(12,74)、(28,66)代入關(guān)系式可得
解得k=﹣,b=80,
所以y與x之間的函數(shù)關(guān)系式為y=﹣x+80.
(2)根據(jù)題意可列方程(-x+80)(x+80)=7000,
化簡(jiǎn)得x2﹣80x+1200=0,解得x1=20,x2=60,
因?yàn)轭}中要求投入成本最低的情況下,所以x2=60不符題意舍去,
答:增種果樹(shù)20棵時(shí),果園可以收獲果實(shí)7000千克.
(3)根據(jù)題意可列函數(shù)關(guān)系式w=(﹣x+80)(x+80)=﹣(x﹣40)2+7200.
令y≥0,可求出自變量x的取值范圍是0≤x≤160,
所以當(dāng)x=40時(shí),w可取到最大值7200,每顆果樹(shù)的產(chǎn)量為y=﹣x+80=60
答:當(dāng)增種果樹(shù)40棵時(shí),果園的總產(chǎn)量最大.每顆果樹(shù)的產(chǎn)量為60千克.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖2,①線(xiàn)段DG與BE之間的數(shù)量關(guān)系是 ;②直線(xiàn)DG與直線(xiàn)BE之間的位置關(guān)系是 .
(2)探究:如圖3,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE,證明:直線(xiàn)DG⊥BE.
(3)應(yīng)用:在(2)情況下,連結(jié)GE(點(diǎn)E在AB上方),若GE∥AB,且AB=,AE=1,則線(xiàn)段DG是多少?(直接寫(xiě)出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn),與x軸相交于點(diǎn)B.
(1)求k的值;
(2)以AB為邊作菱形ABCD,使點(diǎn)C在x軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);
(3)觀察反比例函數(shù)的圖象,請(qǐng)直接寫(xiě)出:當(dāng)時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象以為頂點(diǎn),且過(guò)點(diǎn)
(1)求該函數(shù)的關(guān)系式;
(2)求該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿線(xiàn)段以每秒3個(gè)單位長(zhǎng)的速度運(yùn)動(dòng)至點(diǎn),過(guò)點(diǎn)作射線(xiàn)于點(diǎn).設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒().
(1)線(xiàn)段的長(zhǎng)為 (用含的代數(shù)式表示)
(2)當(dāng)與的周長(zhǎng)的比為時(shí),求的值.
(3)設(shè)與重疊部分圖形的面積為,求與之間的函數(shù)關(guān)系式.
(4)當(dāng)直線(xiàn)把分成的兩部分圖形中有一個(gè)是軸對(duì)稱(chēng)圖形時(shí),直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=6.將扇形OAB沿過(guò)點(diǎn)B的直線(xiàn)折疊.點(diǎn)O恰好落在弧AB上點(diǎn)D處,折痕交OA于點(diǎn)C,求整個(gè)陰影部分的周長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)經(jīng)過(guò)A,B,C三點(diǎn).
(1)求拋物線(xiàn)的解析式。
(2)若點(diǎn)M為第三象限內(nèi)拋物線(xiàn)上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),點(diǎn)Q是直線(xiàn)上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫(xiě)出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】山西特產(chǎn)專(zhuān)賣(mài)店銷(xiāo)售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷(xiāo)售可增加20千克,若該專(zhuān)賣(mài)店銷(xiāo)售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出
(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;
問(wèn)題探究
(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點(diǎn)D為邊BC上的動(dòng)點(diǎn),連接AD以AD為直徑作⊙O交邊AB、AC分別于點(diǎn)E、F,接E、F,求EF的最小值;
問(wèn)題解決
(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線(xiàn)段AC的長(zhǎng)是否存在最小值,若存在,求最小值:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com