已知x2+x-1=0,求的值.
【答案】分析:利用方程解的定義找到等式x2=1-x,再把所求的代數(shù)式利用分式的計算法則化簡、整理,再整體代入即可求解.
解答:解:
=
=
=
∵x2+x-1=0,
∴-x2=x-1,
∴原式==1.
故答案為1.
點評:題主要考查了方程解的定義和分式的運算,此類題型的特點是,利用方程解的定義找到相等關系,再把所求的代數(shù)式化簡后整理出所找到的相等關系的形式,再把此相等關系整體代入所求代數(shù)式,即可求出代數(shù)式的值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知x2-4x+y2-6y+13=0,求x、y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知
x
2
-
x
3
=1
,那么x2-16=
20
20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知
x2-1
+
4y+1
=0,求
2001x
+y2000的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

定義新運算:(a,b)?(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d)(a,b)*(c,d)=a2+c2-bd
(1)求(1,2)*(3,-4)的值;
(2)已知(1,2)?(p,q)=(2,-4),分別求出p與q的值;
(3)在(2)的條件下,求(1,2)⊕(p,q)的結(jié)果;
(4)已知x2+2xy+y2=5,x2-2xy+y2=1,求(x,5)*(y,xy)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先閱讀后解題
若m2+2m+n2-6n+10=0,求m和n的值.
解:m2+2m+1+n2-6n+9=0
即(m+1)2+(n-3)2=0
∵(m+1)2≥0,(n-3)2≥0
∴(m+1)2=0,(n-3)2=0
∴m+1=0,n-3=0
∴m=-1,n=3
利用以上解法,解下列問題:
已知 x2+5y2-4xy+2y+1=0,求x和y的值.

查看答案和解析>>

同步練習冊答案