【題目】如圖1,點(diǎn)P從菱形ABCD的頂點(diǎn)B出發(fā),沿B→D→A勻速運(yùn)動到點(diǎn)A,BD的長是;圖2是點(diǎn)P運(yùn)動時,△PBC的面積y(cm2)隨時間x(s)變化的函數(shù)圖像.
(1)點(diǎn)P的運(yùn)動速度是 cm/s;
(2)求a的值;
(3)如圖3,在矩形EFGH中,EF=2a,FG-EF=1,若點(diǎn)P、M、N分別從點(diǎn)E、F、G三點(diǎn)同時出發(fā),沿矩形的邊按逆時針方向勻速運(yùn)動,當(dāng)點(diǎn)M到達(dá)點(diǎn)G(即點(diǎn)M與點(diǎn)G重合)時,三個點(diǎn)隨之停止運(yùn)動;若點(diǎn)P不改變運(yùn)動速度,且點(diǎn)P、M、N的運(yùn)動速度的比為2:6:3,在運(yùn)動過程中,△PFM關(guān)于直線PM的對稱圖形是△PF'M,設(shè)點(diǎn)P、M、N的運(yùn)動時間為t(單位:s).
①當(dāng)t= s時,四邊形PFMF'為正方形;
②是否存在t,使△PFM與△MGN相似,若存在,求t的值;若不存在,請說明理由.
【答案】(1)1;(2)a=;(3)①1.25;②存在,
【解析】
(1)根據(jù)圖2得到點(diǎn)P從點(diǎn)B運(yùn)動到點(diǎn)D的時間,根據(jù)速度的計算公式計算即可;
(2)結(jié)合圖形,根據(jù)三角形的面積公式求出a;
(3)①根據(jù)題意求出點(diǎn)M的運(yùn)動速度,根據(jù)翻轉(zhuǎn)變換的性質(zhì),正方形的判定定理得到PF=FM時,四邊形PFMF,為正方形,根據(jù)正方形的性質(zhì)列出方程,解方程即可;
②分△PFM∽△MGN、△PFM∽△NGM兩種情況,根據(jù)相似三角形的性質(zhì)列出比例式,代入計算即可.
解:(1)由圖2知,點(diǎn)P從B運(yùn)動到D
∵BD=
∴點(diǎn)P的運(yùn)動速度為÷=1(cm/s)
故答案為1.
(2)如圖1,作DQ⊥BC于點(diǎn)Q
當(dāng)點(diǎn)P在BD上時,a=×BC×DQ
∵四邊形ABCD是菱形,點(diǎn)P的運(yùn)動速度為1
∴AD=BC=1×a=a
∴a=×a×DQ
解得DQ=2
在Rt△BDQ中,BQ==1
∴CQ=a-1
在Rt△CDQ中,CD2=CQ2+DQ2,即a2=(a-1)2+22
解得a=
(3)①∵點(diǎn)P的運(yùn)動速度1cm/s,點(diǎn)P、M的運(yùn)動速度的比為2∶6
∴點(diǎn)M的運(yùn)動速度3cm/s
由題意得EF=2a=5
∵FG-EF=1
∴FG=6
∴PF=5-t,FM=3t
由翻轉(zhuǎn)變換的性質(zhì)可知,PF=PF,,FM=FM,
當(dāng)PF= FM時,PF==PF,= FM=FM,
∴四邊形PFMF,為菱形
∵∠F=90°
∴四邊形PFMF,為正方形
∴5-t=3t
即t=1.25時,四邊形PFMF,為正方形
②存在
∵點(diǎn)P的運(yùn)動速度1cm/s,點(diǎn)P、M、N的運(yùn)動速度的比為2∶6∶3
∴點(diǎn)M的運(yùn)動速度為3cm/s,點(diǎn)N的運(yùn)動速度為1.5cm/s
∴PF=5-t,FM=3t,GN=1.5t
∵點(diǎn)M的運(yùn)動速度為3cn/s,FG=6
∴0≤t≤2
當(dāng)△PFM∽△MGN時,
即
解得t=
當(dāng)△PFM∽△NGM時,
即
解得(舍去)
綜上所述,當(dāng)時,△PFM與△MGN相似.
故答案為(1)1;(2)a=;(3)①1.25;②存在,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)活動小組實(shí)地測量某條河流兩岸互相平行的一段東西走向的河的寬度.在河的北岸邊點(diǎn)A處,測得河的南岸邊點(diǎn)B處在其南偏東45°方向,然后向北走40米到達(dá)點(diǎn)C處,測得點(diǎn)B在點(diǎn)C的南偏東27°方向,求這段河的寬度.(結(jié)果精確到1米.參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市某中學(xué)開展以“三創(chuàng)一辦”為中心,以“校園文明”為主題的手抄報比賽.同學(xué)們積極參與,參賽同學(xué)每人交了一份得意作品,所有參賽作品均獲獎,獎項(xiàng)分為一等獎、二等獎、三等獎和優(yōu)秀獎,將獲獎結(jié)果繪制成如下兩幅統(tǒng)計圖.請你根據(jù)圖中所給信息解答下列問題:
(1)一等獎所占的百分比是__________.
(2)在此次比賽中,一共收到多少份參賽作品?請將條形統(tǒng)計圖補(bǔ)充完整.
(3)各獎項(xiàng)獲獎學(xué)生分別有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東65°方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,則這時海輪所在的B處距離燈塔P的距離是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蘇州市某初中學(xué)校對本校初中學(xué)生完成家庭作業(yè)的時間做了總量控制,規(guī)定每天完成家庭作業(yè)時間不超過1.5小時.該校數(shù)學(xué)課外興趣小組對本校初中學(xué)生回家完成作業(yè)的時間做了一次隨機(jī)抽樣調(diào)查,并繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
時間(小時) | 頻數(shù)(人數(shù)) | 頻率 |
0≤t<0.5 | 4 | 0.1 |
0.5≤t<1 | a | 0.3 |
1≤t<1.5 | 10 | 0.25 |
1.5≤t<2 | 8 | b |
2≤t<2.5 | 6 | 0.15 |
合計 | 1 |
(1)a= ,b= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)請估計該校1 500名初中學(xué)生中,約有多少學(xué)生在1.5小時以內(nèi)完成家庭作業(yè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軍同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
月均用水量(單位:t) | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶?
(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內(nèi)的樣本家庭中任意抽取2個,求抽取出的2個家庭來自不同范圍的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解市民對“垃圾分類知識”的知曉程度,某數(shù)學(xué)學(xué)習(xí)興趣小組對市民進(jìn)行隨機(jī)抽樣的問卷調(diào)查,調(diào)查結(jié)果分為“.非常了解”、“.了解”、“.基本了解”、“.不太了解”四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據(jù)圖中的信息解答下列問題.
(1)這次調(diào)查的市民人數(shù)為 人,圖2中, ;
(2)補(bǔ)全圖1中的條形統(tǒng)計圖;
(3)在圖2中的扇形統(tǒng)計圖中,求“.基本了解”所在扇形的圓心角度數(shù);
(4)據(jù)統(tǒng)計,2018年該市約有市民500萬人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計對“垃圾分類知識”的知曉程度為“.不太了解”的市民約有多少萬人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點(diǎn)E、F,若CE=2,連接CF.以下結(jié)論:①∠BAF=∠BCF; ②點(diǎn)E到AB的距離是2; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正確的有()
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌粽子,每盒進(jìn)價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com