【題目】如圖,已知AB是⊙O的直徑,過(guò)O點(diǎn)作OP⊥AB,交弦AC于點(diǎn)D,交⊙O于點(diǎn)E,且使∠PCA=∠ABC.
(1)求證:PC是⊙O的切線;
(2)若∠P=60°,PC=2,求PE的長(zhǎng).
【答案】(1)證明見解析;(2)4-.
【解析】
試題分析:(1)連接OC,由OB=OC及已知可得∠PCA=∠OCB.由直徑所對(duì)的圓周角為直角有∠ACB=90°,從而可得∠OCP=90°,所以PC是⊙O的切線;(2)在Rt△PCO中,利用∠P的正切和正弦分別求得OC、OP的長(zhǎng),再根據(jù)PE=OP-OE計(jì)算即可.
試題解析:(1)連接OC. ∵OB=OC,∴∠ABC=∠OCB. 又∠PCA=∠ABC,∴∠PCA=∠OCB.∵AB為⊙O直徑,∴∠ACB=90°. ∴∠ACO+∠OCB=90°,∴∠ACO+∠PCA=90°,即∠OCP=90°,∴PC是⊙O的切線;
(2)在Rt△PCO中,tan∠P=,∴OC=PCtan∠P=2tan60°=,sin∠P=,∴OP== =4,∴PE=OP-OE=OP-OC=4-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=BC , ∠ABC=90°,F為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF .
(1)求證:△ABE≌△CBF;
(2)若∠BAE=25°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)是軸上的一點(diǎn),且以為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo);
(3)如圖2,軸瑋拋物線相交于點(diǎn),點(diǎn)是直線下方拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)且與軸平行的直線與,分別交于點(diǎn),,試探究當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形的面積最大,求點(diǎn)的坐標(biāo)及最大面積;
(4)若點(diǎn)為拋物線的頂點(diǎn),點(diǎn)是該拋物線上的一點(diǎn),在軸,軸上分別找點(diǎn),,使四邊形的周長(zhǎng)最小,求出點(diǎn),的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)在以為圓心,為直徑的半圓弧上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)及的中點(diǎn)重合),連接.過(guò)點(diǎn)作于點(diǎn),以為邊在半圓同側(cè)作正方形,過(guò)點(diǎn)作的切線交射線于點(diǎn),連接、.
(1)探究:如左圖,當(dāng)動(dòng)點(diǎn)在上運(yùn)動(dòng)時(shí);
①判斷是否成立?請(qǐng)說(shuō)明理由;
②設(shè),是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由;
③設(shè),是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由;
(2)拓展:如右圖,當(dāng)動(dòng)點(diǎn)在上運(yùn)動(dòng)時(shí);
分別判斷(1)中的三個(gè)結(jié)論是否保持不變?如有變化,請(qǐng)直接寫出正確的結(jié)論.(均不必說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道一次函數(shù) 與 的圖象關(guān)于 軸對(duì)稱,所以我們定義:函數(shù) 與 互為“鏡子”函數(shù).
(1)請(qǐng)直接寫出函數(shù) 的“鏡子”函數(shù)
(2)如果一對(duì)“鏡子”函數(shù) 與 的圖象交于點(diǎn) ,且與 軸交于 、 兩點(diǎn),如圖所示,若 ,且 的面積是 ,求這對(duì)“鏡子”函數(shù)的解析式.
(3)若點(diǎn) 是 軸上的一個(gè)動(dòng)點(diǎn),當(dāng) 為等腰三角形時(shí),直接寫出點(diǎn) 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若△ABC的三邊a,b,c滿足(ac)(a2+b2c2)=0,則△ABC是( )
A. 等腰三角形 B. 直角三角形
C. 等腰三角形或直角三角形 D. 等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在函數(shù)()的圖象上,點(diǎn)在直線(為常數(shù),且)上,若,兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn),為函數(shù),圖象上的一對(duì)“友好點(diǎn)”.請(qǐng)問(wèn)這兩個(gè)函數(shù)圖象上的“友好點(diǎn)”對(duì)數(shù)的情況為
A.有對(duì)或對(duì) B.只有對(duì) C.只有對(duì) D.有對(duì)或對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游景點(diǎn)的門票售價(jià)為:成人票每張50元,兒童票每張30元,如果某日該景點(diǎn)售出門票100張,門票收入共4000元,那么當(dāng)日售出成人票張.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com