【題目】每年的農(nóng)歷三月初一為通州風(fēng)箏節(jié).這天,同學(xué)正在江海明珠廣場(chǎng)上放風(fēng)箏,如圖風(fēng)箏從A處起飛,幾分鐘后便飛達(dá)C處,此時(shí),在AQ延長(zhǎng)線上B處的小宋同學(xué),發(fā)現(xiàn)自己的位置與風(fēng)箏和廣場(chǎng)邊旗桿PQ的頂點(diǎn)P在同一直線上.

(1)已知旗桿高10米,若在B處測(cè)得旗桿頂點(diǎn)P的仰角為30°,A處測(cè)得點(diǎn)P的仰角為45°,試求A、B之間的距離;

(2)此時(shí),在A處背向旗桿又測(cè)得風(fēng)箏的仰角為75°,若繩子在空中視為一條線段,求繩子AC為多少米?(結(jié)果可保留根號(hào))

【答案】解:(1)在Rt△BPQ中,PQ=10米,∠B=30°,

則BQ=cot30°×PQ,

又在Rt△APQ中,∠PAB=45°,

AQ=tan45°×PQ=10,

即:AB=+10)(米)

(2)過(guò)A作AE⊥BC于E,

在Rt△ABE中,∠B=30°,AB=+10,

∴ AE=sin30°×AB=+10)=5+5,

∵∠CAD=75°,∠B=30° ∴ ∠C=45°,

在Rt△CAE中,sin45°=

AC=(5+5)=5+5)(米)

【解析】首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及到兩個(gè)直角三角形△BPQ、△ABE,應(yīng)利用PQ=10米構(gòu)造方程關(guān)系式,進(jìn)而可解即可求出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式.

(1)x2(x﹣y)+y2(y﹣x)

(2)(a2+1)﹣4a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,過(guò)點(diǎn)O作OE⊥AC交AB于E,若BC=4,△AOE的面積為5,則sin∠BOE的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4根小棒,長(zhǎng)度分別為2 cm,3 cm,4 cm,5 cm,任意取3根小棒首尾順次相接搭三角形,可以搭出不同的三角形的個(gè)數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一次函數(shù)y=mx+2的圖象經(jīng)過(guò)點(diǎn)(-2,6).
(1)求m的值;
(2)畫出此函數(shù)的圖象;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有A,B兩種商品,買2件A商品和1件B商品用了90元,買3件A商品和2件B商品共用了160元.

(1)求A,B兩種商品每件多少元?

(2)如果小亮準(zhǔn)備購(gòu)買A,B兩種商品共10件,總費(fèi)用不超過(guò)350元,且不低于300元,問(wèn)有幾種購(gòu)買方案,哪種方案費(fèi)用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果△ABC的兩邊長(zhǎng)分別為3和5,那么連結(jié)△ABC三邊中點(diǎn)D、E、F所得的△DEF的周長(zhǎng)可能是(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2x+2(a0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,已知點(diǎn)A(﹣4,0).

(1)求拋物線與直線AC的函數(shù)解析式;

(2)若點(diǎn)D(m,n)是拋物線在第二象限的部分上的一動(dòng)點(diǎn),四邊形OCDA的面積為S,求S關(guān)于m的函數(shù)關(guān)系;

(3)若點(diǎn)E為拋物線上任意一點(diǎn),點(diǎn)F為x軸上任意一點(diǎn),當(dāng)以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出滿足條件的所有點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案