【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB、BC于點E、F、G,連接ED、DG.
(1)請判斷四邊形EBGD的形狀,并說明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,求GC的長.
【答案】(1)四邊形EBGD是菱形.理由見解析;(2)1+
【解析】試題分析:(1)結(jié)論四邊形EBGD是菱形.只要證明BE=ED=DG=GB即可.
(2)作DH⊥BC于H,由四邊形EBGD為菱形ED=DG=2,求出GH,CH即可解決問題.
試題解析:(1)四邊形EBGD是菱形.
理由:∵EG垂直平分BD,
∴EB=ED,GB=GD,
∴∠EBD=∠EDB,
∵∠EBD=∠DBC,
∴∠EDF=∠GBF,
在△EFD和△GFB中,
,
∴△EFD≌△GFB,
∴ED=BG,
∴BE=ED=DG=GB,
∴四邊形EBGD是菱形.
(2)作DH⊥BC于H,
∵四邊形EBGD為菱形ED=DG=2,
∴∠ABC=30°,∠DGH=30°,
∴DH=1,GH=,
∵∠C=45°,
∴DH=CH=1,
∴CG=GH+CH=1+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師和李老師住在同一個小區(qū),離學(xué)校3000米,某天早晨,張老師和李老師分別于7點10分、7點15分離家騎自行車上班,剛好在校門口遇上,已知李老師騎車的速度是張老師的1.2倍,求他們各自騎自行車的速度分別是多少米/分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在他家里的時鐘上安裝了一個電腦軟件,他設(shè)定當(dāng)鐘聲在n點鐘響起后,下一次則在(3n﹣1)小時后響起,例如鐘聲第一次在3點鐘響起,那么第2次在(3×3﹣1=8)小時后,也就是11點響起,第3次在(3×11﹣1=32)小時后,即7點響起,以此類推…;現(xiàn)在第1次鐘聲響起時為2點鐘,那么第3次響起時為_____點,第2017次響起時為_____點(如圖鐘表,時間為12小時制).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,點D是BC邊上一動點(不與點B、C重合),過點D作DE⊥BC交AB邊于點E,將∠B沿直線DE翻折,點B落在射線BC上的點F處,當(dāng)△AEF為直角三角形時,求BD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a,b,c為常數(shù)a≠0)與x軸,y軸分別交于A,B,C三點,已知A(-1,0),B(3,0),C(0,3),動點E從拋物線的頂點點D出發(fā)沿線段DB向終點B運動.
(1)直接寫出拋物線解析式和頂點D的坐標(biāo);
(2)過點E作EF⊥y軸于點F,交拋物線對稱軸左側(cè)的部分于點G,交直線BC于點H,過點H作HP⊥x軸于點P,連接PF,求當(dāng)線段PF最短時G點的坐標(biāo);
(3)在點E運動的同時,另一個動點Q從點B出發(fā)沿直線x=3向上運動,點E的速度為每秒個單位長度,點Q速度均為每秒1個單位長度,當(dāng)點E到達(dá)終點B時點Q也隨之停止運動,設(shè)點E的運動時間為t秒,試問存在幾個t值能使△BEQ為等腰三角形?并直接寫出相應(yīng)t值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com