【題目】如圖,AD∥BC,AB∥CD,AC,BD交于O點(diǎn),過(guò)O點(diǎn)的直線EF交AD于E點(diǎn),交BC于F點(diǎn),且BF=DE,則圖中的全等三角形共有( )
A. 6對(duì) B. 5對(duì) C. 3對(duì) D. 2對(duì)
【答案】A
【解析】
本題是開(kāi)放題,應(yīng)先根據(jù)平行四邊形的性質(zhì)及已知條件得到圖中全等的三角形:△ADC≌△CBA,△ABD≌△CDB,△OAD≌△OCB,△OEA≌△OFC,△OED≌△OFB,△OAB≌△OCD共6對(duì).再分別進(jìn)行證明.
解:①△ADC≌△CBA,
∵ABCD為平行四邊形,
∴AB=CD,∠ABC=∠ADC,AD=BC,
∴△ADC≌△CBA;
②△ABD≌△CDB,
∵ABCD為平行四邊形,
∴AB=CD,∠BAD=∠BCD,AD=BC,
∴△ABD≌△CDB;
③△OAD≌△OCB,
∵對(duì)角線AC與BD交于O,
∴OA=OC,OD=OB,∠AOD=∠BOC,
∴△OAD≌△OCB;
④△OEA≌△OFC,
∵對(duì)角線AC與BD交于O,
∴∠AOE=∠COF,OA=OC,∠OAE=∠OCF,
∴△OEA≌△OFC;
⑤△OED≌△OFB,
∵對(duì)角線AC與BD交于O,
∴OD=OB,∠EOD=∠FOB,OE=OF,
∴△OED≌△OFB;
⑥△OAB≌△OCD,
∵對(duì)角線AC與BD交于O,
∴OA=OC,∠AOB=∠DOC,OB=OD,
∴△OAB≌△OCD.
∴一共有6對(duì).
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司在某市五個(gè)區(qū)投放共享單車(chē)供市民使用,投放量的分布及投放后的使用情況統(tǒng)計(jì)如下.
(1)該公司在全市一共投放了萬(wàn)輛共享單車(chē);
(2)在扇形統(tǒng)計(jì)圖中,B區(qū)所對(duì)應(yīng)扇形的圓心角為°;
(3)該公司在全市投放的共享單車(chē)的使用量占投放量的85%,請(qǐng)計(jì)算C區(qū)共享單車(chē)的使用量并補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,點(diǎn)D、E分別在AC、BC上,且CDBC=ACCE,以E為圓心,DE長(zhǎng)為半徑作圓,⊙E經(jīng)過(guò)點(diǎn)B,與AB、BC分別交于點(diǎn)F、G.
(1)求證:AC是⊙E的切線.
(2)若AF=4,CG=5,求⊙E的半徑;
(3)若Rt△ABC的內(nèi)切圓圓心為I,則IE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=12厘米,BC=8厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為x厘米/秒,則當(dāng)△BPD與△CQP全等時(shí),x的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一根24cm的筷子置于底面直徑為15cm,高為8cm的圓柱形水杯中,設(shè)筷子露在杯子外面的長(zhǎng)度為hcm,則h的取值范圍是( )
A. h≤17 B. h≥8 C. 15≤h≤16 D. 7≤h≤16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=2cm,BC=6cm,把△ABC沿對(duì)角線AC折疊,得到△AB′C,且B′C與AD相交于點(diǎn)E,則AE的長(zhǎng)為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仔細(xì)閱讀材料,再?lài)L試解決問(wèn)題:
完全平方式 以及的值為非負(fù)數(shù)的特點(diǎn)在數(shù)學(xué)學(xué)習(xí)中有廣泛的應(yīng)用,比如探求 的最大(小)值時(shí),我們可以這樣處理:
解:原式 = .
因?yàn)闊o(wú)論 取什么數(shù),都有的值為非負(fù)數(shù),所以的最小值為0;此時(shí) 時(shí),進(jìn)而 的最小值是 ;所以當(dāng)時(shí),原多項(xiàng)式的最小值是 .
請(qǐng)根據(jù)上面的解題思路,探求:
⑴.多項(xiàng)式 的最小值是多少,并寫(xiě)出對(duì)應(yīng)的的取值;
⑵.多項(xiàng)式的最大值是多少,并寫(xiě)出對(duì)應(yīng)的的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】人和人之間講友情,有趣的是,數(shù)與數(shù)之間也有相類(lèi)似的關(guān)系. 若兩個(gè)不同的自然數(shù)的所有真因數(shù)(即除了自身以外的正約數(shù))之和相等,我們稱(chēng)這兩個(gè)數(shù)為“親和數(shù)”. 例如:18的約數(shù)有1、2、3、6、9、18,它的真因數(shù)之和1+2+3+6+9=21;51的約數(shù)有1、3、17、51,它的真因數(shù)之和1+3+17=21,所以18和51為“親和數(shù)”. 數(shù)還可以與動(dòng)物形象地聯(lián)系起來(lái),我們稱(chēng)一個(gè)兩頭(首位與末位)都是的數(shù)為“兩頭蛇數(shù)”.
(1)6的“親和數(shù)”為 ;將一個(gè)四位的“兩頭蛇數(shù)”去掉兩頭,得到一個(gè)兩位數(shù),它恰好是這個(gè)“兩頭蛇數(shù)”的約數(shù),求滿足條件的“兩頭蛇數(shù)”.
(2)已知兩個(gè)“親和數(shù)”的真因數(shù)之和都等于15,且這兩個(gè)“親和數(shù)”中較大的數(shù)能將一個(gè)正中間數(shù)位(百位)上的數(shù)為4的五位“兩頭蛇數(shù)”整除,若這個(gè)五位“兩頭蛇數(shù)”的千位上的數(shù)字小于十位上的數(shù)字,求滿足條件的“兩頭蛇數(shù)”.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com