如圖,對稱軸為直線的拋物線經過點A(6,0)和B(0,4)。
(1)求拋物線解析式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量的取值范圍;
(3)在(2)基礎上試探索:
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由。
解:(1)由拋物線的對稱軸是
可設解析式為,
把A、B兩點坐標代入上式,得,
解之,得,
故拋物線解析式為,頂點為
(2)∵點E(x,y)在拋物線上,位于第四象限,
且坐標適合
∴y<0,即-y>0,-y表示點E到OA的距離,
∵OA是的對角線,
,
因為拋物線與x軸的兩個交點是(1,0)的(6,0),
所以,自變量x的取值范圍是1<x<6;
(3)①根據題意,
當S=24時,即,
化簡,得
解之,得
故所求的點E有兩個,分別為E1(3,-4),E2(4,-4),
點E1(3,-4)滿足OE=AE,所以是菱形;
點E2(4,-4)不滿足OE=AE,所以不是菱形;
②當OA⊥EF,且OA=EF時,是正方形,此時點E的坐標只能是(3,-3),而坐標為(3,-3)的點不在拋物線上,故不存在這樣的點E,使為正方形。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,對稱軸為直線的拋物線經過點A(6,0)和B(0,4)(1)求拋物線的解析式及頂點坐標;(2)設點E(x,y)是拋物線上的一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;①當OEAF的面積為24時,請判斷OEAF是否為菱形?②是否存在點E,使OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,對稱軸為直線的拋物線經過點A(6,0)和B(0,4).

(1)求拋物線解析式及頂點坐標;

(2)設點E(,)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形.求平行四邊形OEAF的面積S與之間的函數(shù)關系式,并寫出自變量的取值范圍;

     ①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?

     ②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010—2011學年湖北省鄂州市九年級上學期期末考試數(shù)學試卷 題型:解答題

如圖,對稱軸為直線的拋物線經過點A(6,0)和B(0,4).

【小題1】求拋物線解析式及頂點坐標;
【小題2】設點E(x,y)是拋物線第四象限上一動點,四邊形OEAF是以OA為對角線的平行四邊形,求OEAF的面積S與x之間的函數(shù)關系式,并求出自變量的取值范圍
【小題3】若S=24,試判斷OEAF是否為菱形。
【小題4】若點E在⑴中的拋物線上,點F在對稱軸上,以O、E、A、F為頂點的四邊形能否為平行四邊形,若能,求出點E、F的坐標;若不能,請說明理由。(第⑷問不寫解答過程,只寫結論)

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(重慶A卷)數(shù)學(解析版) 題型:解答題

如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0)。

(1)求點B的坐標;

(2)已知,C為拋物線與y軸的交點。

①若點P在拋物線上,且,求點P的坐標;

②設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆湖北省鄂州市九年級上學期期末考試數(shù)學試卷 題型:解答題

如圖,對稱軸為直線的拋物線經過點A(6,0)和B(0,4).

1.求拋物線解析式及頂點坐標;

2.設點E(x,y)是拋物線第四象限上一動點,四邊形OEAF是以OA為對角線的平行四邊形,求OEAF的面積S與x之間的函數(shù)關系式,并求出自變量的取值范圍

3.若S=24,試判斷OEAF是否為菱形。

4.若點E在⑴中的拋物線上,點F在對稱軸上,以O、E、A、F為頂點的四邊形能否為平行四邊形,若能,求出點E、F的坐標;若不能,請說明理由。(第⑷問不寫解答過程,只寫結論)

 

查看答案和解析>>

同步練習冊答案