【題目】如圖,△ABC中,∠ACB=90°,AC=BC=1,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A1B1C,旋轉(zhuǎn)角為ɑ(0°<ɑ<90°),連接BB1.設(shè)CB1交AB于點(diǎn)D,A1B1分別交AB、AC于點(diǎn)E,F(xiàn).
(1)求證:△BCD≌△A1CF;
(2)若旋轉(zhuǎn)角ɑ為30°,
①請(qǐng)你判斷△BB1D的形狀;
②求CD的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)①△BB1D是等腰三角形,理由見(jiàn)解析;②CD=﹣1.
【解析】
(1)根據(jù)已知條件,利用旋轉(zhuǎn)的性質(zhì)及全等三角形的判定方法,來(lái)判定三角形全等.
(2)①根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的判定與性質(zhì)得到△BB1D是等腰三角形;
②如圖,過(guò)D作DG⊥BC于G,設(shè)DG=x,通過(guò)解直角三角形和已知條件BC=1列出關(guān)于x的方程,通過(guò)解方程求得x的值,然后易得CD=2x.
(1)∵AC=BC,
∴∠A=∠ABC.
∵△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角α(0°<α<90°)得到△A1B1C,
∴∠A1=∠A,A1C=AC,∠ACA1=∠BCB1=α.
∴∠A1=∠CBD,A1C=BC.
在△CBD與△CA1F中,
∴△BCD≌△A1CF(ASA).
(2)①△BB1D是等腰三角形,理由如下:
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠CAB=∠CBA=45°.
又由旋轉(zhuǎn)的性質(zhì)得到BC=B1C,則∠CB1B=∠CBB1,
∴∠CB1B=∠CBB1==75°.
∴∠B1BD=∠CBB1﹣∠CBA=75°﹣45°=30°,
∴∠BDB1=480°﹣75°﹣30°=75°,
∴∠BDB1=∠CB1B=∠DB1B=75°,
∴BD=BB1,
∴△BB1D是等腰三角形.
②如圖,過(guò)D作DG⊥BC于G,設(shè)DG=x,
∵ɑ=30°,∠DBE=45°,
∴BG=x,CG=x,
∴x+x=1,
解得x=,
故CD=2x=﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)械租賃公司有同一型號(hào)的機(jī)械設(shè)備40套,經(jīng)過(guò)一段時(shí)間的經(jīng)營(yíng)發(fā)現(xiàn):當(dāng)每套機(jī)械設(shè)備的月租金為270元時(shí),恰好全部租出,在此基礎(chǔ)上,當(dāng)每套設(shè)備的月租金提高10元時(shí),這種設(shè)備就少租一套,且未租出一套設(shè)備每月需要支出費(fèi)用(維護(hù)費(fèi)、管理費(fèi)等)20元.
(1)設(shè)每套設(shè)備的月租金為(元),用含的代數(shù)式表示未租出的設(shè)備數(shù)(套)以及所有未租出設(shè)備(套)的支出費(fèi)用;
(2)租賃公司的月收益能否達(dá)到11040元?此時(shí)應(yīng)該出租多少套機(jī)械設(shè)備?每套月租金是多少元?請(qǐng)簡(jiǎn)要說(shuō)明理由;
(3)租賃公司的月收益能否在11040元基礎(chǔ)上再提高?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程
①(直接開(kāi)平方法)②(用配方法)③(用因式分解法)
④. ⑤ ⑥.
⑦. ⑧.x-2)(x-5)=-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過(guò)點(diǎn)A(1,0),且當(dāng)x=0和x=5時(shí)所對(duì)應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣+bx+c的圖象分別交于B,C兩點(diǎn),點(diǎn)B在第一象限.
(1)求二次函數(shù)y=﹣+bx+c的表達(dá)式;
(2)連接AB,求AB的長(zhǎng);
(3)連接AC,M是線段AC的中點(diǎn),將點(diǎn)B繞點(diǎn)M旋轉(zhuǎn)180°得到點(diǎn)N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在建立平面直角坐標(biāo)系的方格紙中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)P的坐標(biāo)為(﹣1,0),請(qǐng)按要求畫圖與作答.
(1)把△ABC繞點(diǎn)P旋轉(zhuǎn)180°得△A′B′C′.
(2)把△ABC向右平移7個(gè)單位得△A″B″C″.
(3)△A′B′C′與△A″B″C″是否成中心對(duì)稱,若是,找出對(duì)稱中心P′,并寫出其坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,BE⊥EF,DF⊥EF,BE=2.5cm,DF=4cm,那么EF的長(zhǎng)為( )
A. 6.5cm B. 6cm C. 5.5cm D. 4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)E、F、G、H分別是邊AB、BC、CD和DA的中點(diǎn),連接EF、FG、GH和HE.若EH=2EF,則下列結(jié)論正確的是
A. AB=EF B. AB=2EF C. AB=EF D. AB=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線相交于點(diǎn)0,AC=2,BD=.將菱形按如圖方式折疊,使點(diǎn)B與點(diǎn)O重合,折痕為EF,則五邊形AEFCD的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“扶貧攻堅(jiān)”活動(dòng)中,城南中學(xué)計(jì)劃選購(gòu)甲、乙兩種物品慰問(wèn)貧困戶.已知甲物品的單價(jià)比乙物品的單價(jià)高10元,若用500元單獨(dú)購(gòu)買甲物品與450元單獨(dú)購(gòu)買乙物品的數(shù)量相同.
(1)請(qǐng)問(wèn)甲、乙兩種物品的單價(jià)各為多少?
(2)如果該單位計(jì)劃購(gòu)買甲、乙兩種物品共55件,總費(fèi)用不少于5000元且不超過(guò)5020元,通過(guò)計(jì)算得出共有幾種選購(gòu)方案?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com