(2013•天橋區(qū)二模)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,點E是CD的中點,△ABD的周長為16cm,則△DOE的周長是(  )
分析:根據(jù)平行四邊形的對邊相等和對角線互相平分可得,BC=AD,DC=AB,DO=BO,E點是CD的中點,可得OE是△DCB的中位線,可得OE=
1
2
BC.從而得到結(jié)果是8cm.
解答:解:∵四邊形ABCD是平行四邊形,
∴O是BD中點,△ABD≌△CDB,
又∵E是CD中點,
∴OE是△BCD的中位線,
∴OE=
1
2
BC,
即△DOE的周長=
1
2
△BCD的周長,
∴△DOE的周長=
1
2
△DAB的周長.
∴△DOE的周長=
1
2
×16=8cm.
故選C.
點評:本題主要考查平行四邊形的性質(zhì)及三角形中位線的性質(zhì)的應(yīng)用,是中考常見題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•天橋區(qū)二模)|-
1
2
|+2-1-
9
的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•天橋區(qū)二模)在矩形ABCD的各邊AB,BC,CD和DA上分別選取點E,F(xiàn),G,H,使得AE=AH=CF=CG,如果AB=60,BC=40,四邊形EFGH的最大面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•天橋區(qū)二模)如圖,在平面直角坐標(biāo)系中,多邊形OABCDE的頂點坐標(biāo)分別是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直線l經(jīng)過點M(2,3),且將多邊形OABCDE分割成面積相等的兩部分,則下列各點在直線l上的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•天橋區(qū)二模)如圖所示,⊙P表示的是一個摩天輪,最高處A到地面的距離是80.5米,最低處B到地面的距離是0.5米.小紅由B處登上摩天輪,乘坐一周需要12分鐘.乘坐一周的過程中,小紅距離地面的高度是60.5米的時刻是第
4或8
4或8
分鐘.

查看答案和解析>>

同步練習(xí)冊答案