△ABC中,∠B=∠C,D為BC上一點,AB上取BF=CD,AC上取CE=BD,則∠FDE等于


  1. A.
    90°-∠A
  2. B.
    90°-數(shù)學(xué)公式∠A
  3. C.
    180°-∠A
  4. D.
    45°-數(shù)學(xué)公式∠A
B
分析:由題中條件不難得出△BFD≌△CDE,得出∠BFD=∠CDE,再由角之間的轉(zhuǎn)化,進而可得出結(jié)論.
解答:∵∠B=∠C,BF=CD,CE=BD,
∴△BFD≌△CDE,
∴∠BFD=∠CDE,
∴∠FDE=180°-∠BDF-∠CDE,
=180°-∠BDF-∠BFD,
=∠B,
=(180°-∠A),
=90°-∠A.
故選B.
點評:本題主要考查了全等三角形的判定及性質(zhì)以及三角形內(nèi)角和定理的運用,應(yīng)熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,DE∥BC,DE與AB相交于D,與AC相交于E,若AC=8,EC=3,DB=4,則AD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,若∠B=60°,b=30,則a+c=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC=2,AB=3,D是AC上一點,E是AB上一點,且∠ADE=∠B,設(shè)AD=x,AE=y,則y與x之間的函數(shù)關(guān)系式是( 。
A、y=
3
2
x(0<x<2)
B、y=
3
2
x(0<x≤2)
C、y=
2
3
x(0<x≤2)
D、y=
2
3
x(0<x<2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=8,AC=6,BC=7,點D在AC上,AD=2,
(1)過點D畫直線,使它截△ABC的兩邊所得的小三角形與△ABC相似(圖形備用,標(biāo)出與∠B相等的角);
(2)若截線與AB交于E,求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、在△ABC中,AB=3,BC=8,則AC的取值范圍是
5<AC<11

查看答案和解析>>

同步練習(xí)冊答案