【題目】下列條件中,不能判斷是直角三角形的是(

A.B.C.D.

【答案】D

【解析】

根據(jù)勾股定理的逆定理、三角形的內(nèi)角和為180度進(jìn)行判定即可.

解:Aabc=345,所以設(shè)a=3x,b=4x,c=5x,而(3x2+4x2=5x2,故為直角三角形;

B、,所以設(shè)a=xb=2x,c=x,而 符合勾股定理的逆定理,故為直角三角形;

C、因?yàn)椤?/span>A+B=C,∠A+B+C=180°,則∠C=90°,故為直角三角形;

D、因?yàn)?/span>,所以設(shè)∠A=3x,則∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是銳角三角形.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:把RtABCRtDEF按如圖1擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、CE)、F在同一條直線上,∠ACB=∠EDF90°,∠DEF45°,AC8cm,BC6cm,EF9cm,如圖2,△DEF從圖1的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DEAC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為ts)(0t4.5).解答下列問題:

1)用含t的代數(shù)式表示線段AP   ;

2)當(dāng)t為何值時(shí),點(diǎn)E在∠A的平分線上?

3)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?

4)連接PE,當(dāng)t1s)時(shí),求四邊形APEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中的網(wǎng)格由單位正方形構(gòu)成,△ABC中,A點(diǎn)坐標(biāo)為(2,3),B點(diǎn)坐標(biāo)為(-2,0),C點(diǎn)坐標(biāo)為(0,-1).

1AC的長(zhǎng)為______;

2)求證:AC⊥BC;

3)若以A、BC及點(diǎn)D為頂點(diǎn)的四邊形為平行四邊形ABCD,畫出平行四邊形ABCD,并寫出D點(diǎn)的坐標(biāo)______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn),若點(diǎn)的坐標(biāo)為 (其中為常數(shù),且),則稱點(diǎn)為點(diǎn)的“之雅禮點(diǎn)”.例如:的“之雅禮點(diǎn)”為,即

1)①點(diǎn) 之雅禮點(diǎn)” 的坐標(biāo)為___________;

②若點(diǎn)的“之雅禮點(diǎn)” 的坐標(biāo)為,請(qǐng)寫出一個(gè)符合條件的點(diǎn)的坐標(biāo)_________;

2)若點(diǎn)軸的正半軸上,點(diǎn)的“之雅禮點(diǎn)”為點(diǎn),且為等腰直角三角形,則的值為____________

3)在(2)的條件下,若關(guān)于的分式方程無解,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=1,BC=,點(diǎn)ORt△ABC內(nèi)一點(diǎn),連接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求畫圖(保留畫圖痕跡):以點(diǎn)B為旋轉(zhuǎn)中心,將△AOB繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°,得到△A′O′B(得到A、O的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′、O′),則∠A′BC=______,OA+OB+OC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+cx軸于A、B兩點(diǎn)(AB的左側(cè)),且OA=3,OB=1,與y軸交于C(0,3),拋物線的頂點(diǎn)坐標(biāo)為D(﹣1,4).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)求拋物線的解析式;

(3)過點(diǎn)D作直線DEy軸,交x軸于點(diǎn)E,點(diǎn)P是拋物線上B、D兩點(diǎn)間的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B、D兩點(diǎn)重合),PA、PB與直線DE分別交于點(diǎn)F、G,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),EF+EG是否為定值?若是,試求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在D處測(cè)得山頂C的仰角為37°,向前走100米來到山腳A處,測(cè)得山坡AC的坡度為i=1:0.5,求山的高度(不計(jì)測(cè)角儀的高度,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問題:

定義:如果二次函數(shù)滿足,,則稱這兩個(gè)函數(shù)互為旋轉(zhuǎn)函數(shù)

求函數(shù)旋轉(zhuǎn)函數(shù)

小明是這樣思考的:由函數(shù)可知,,,根據(jù),,求出,,,就能確定這個(gè)函數(shù)的旋轉(zhuǎn)函數(shù)

請(qǐng)參考小明的方法解決下面問題:

(1)直接寫出函數(shù)旋轉(zhuǎn)函數(shù);

(2)若函數(shù)互為旋轉(zhuǎn)函數(shù),求的值;

(3)已知函數(shù)的圖象與軸交于點(diǎn)A、B兩點(diǎn)(A在B的左邊),與軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1,B1,C1,試證明經(jīng)過點(diǎn)A1,B1,C1的二次函數(shù)與函數(shù)互為旋轉(zhuǎn)函數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個(gè)小正方形的邊長(zhǎng)都為1,四邊形ABCD的頂點(diǎn)都在小正方形的頂點(diǎn)上.

1)求四邊形ABCD的面積;

2)∠BCD是直角嗎?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案