(本題8分)利用一面長(zhǎng)45米的墻,用80m長(zhǎng)的籬笆圍成一個(gè)矩形場(chǎng)地。
⑴怎樣才能使矩形場(chǎng)地面積為750㎡?
⑵能否使所圍矩形場(chǎng)地的面積為810㎡,為什么?
⑴圍成矩形長(zhǎng)為30m,寬為25 m時(shí),能使矩形面積為750㎡。
⑵不能。

分析:(1)設(shè)所圍矩形ABCD的長(zhǎng)AB為x米,則寬AD為1/2(80-x)米,根據(jù)矩形面積的計(jì)算方法列出方程求解。
(2)假使矩形面積為810,則x無(wú)實(shí)數(shù)根,所以不能圍成矩形場(chǎng)地。
解答:
(1)設(shè)所圍矩形ABCD的長(zhǎng)AB為x米,則寬AD為1/2(80-x)米。
依題意,得x?1/2(80-x)=750。
即,x2-80x+1500=0,
解此方程,得x1=30,x2=50。
∵墻的長(zhǎng)度不超過(guò)45m,∴x2=50不合題意,應(yīng)舍去。
當(dāng)x=30時(shí),1/2(80-x)=1/2×(80-30)=25,
所以,當(dāng)所圍矩形的長(zhǎng)為30m、寬為25m時(shí),能使矩形的面積為750m2
(2)不能。
因?yàn)橛蓌?1/2(80-x)=810得x2-80x+1620=0。
又∵b2-4ac=(-80)2-4×1×1620=-80<0,
∴上述方程沒(méi)有實(shí)數(shù)根。
因此,不能使所圍矩形場(chǎng)地的面積為810m2。
點(diǎn)評(píng):此題不僅是一道實(shí)際問(wèn)題,而且結(jié)合了矩形的性質(zhì),解答此題要注意以下問(wèn)題:
(1)矩形的一邊為墻,且墻的長(zhǎng)度不超過(guò)45米;
(2)根據(jù)矩形的面積公式列一元二次方程并根據(jù)根的判別式來(lái)判斷是否兩邊長(zhǎng)相等。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,有長(zhǎng)方形ABCD紙片,將△BCD沿對(duì)角線折疊,記點(diǎn)C的對(duì)應(yīng)點(diǎn)為.若∠AD=20°,則∠BDC      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題10分)如圖,梯形ABCD中,AD∥BC,BC=2AD,F(xiàn)、G分別為邊BC、CD的中點(diǎn),連接AF,F(xiàn)G,過(guò)D作DE∥GF交AF于點(diǎn)E。
(1)證明△AED≌△CGF
(2)若梯形ABCD為直角梯形,判斷四邊形DEFG是什么特殊四邊形?并證明你的結(jié)論。
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題



動(dòng)手操作:在矩形紙片中,.如圖所示,折疊紙片,使點(diǎn) 落在邊上的處,折痕為.當(dāng)點(diǎn)邊上移動(dòng)時(shí),折痕的端點(diǎn)也隨之移動(dòng).若限定點(diǎn)分別在邊上移動(dòng),則點(diǎn)邊上距B點(diǎn)可移動(dòng)的最短距離為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,AD∥BC,∠B是直角,AB=14 cm,AD=18 cm.BC=21 cm,點(diǎn)P從點(diǎn)A出發(fā),沿邊AD向點(diǎn)D以1 cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)沿邊CB向點(diǎn)B以9cm/s的速度移動(dòng),若有一點(diǎn)運(yùn)動(dòng)到端點(diǎn)時(shí),另一點(diǎn)也隨之停止.如果P、Q同時(shí)出發(fā),能否有四邊形PQCD成等腰梯形?如果存在,求經(jīng)過(guò)幾秒后四邊形PQCD成等腰梯形;如果不存在,請(qǐng)說(shuō)明理由.(本題9分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(9分)如圖所示,在邊長(zhǎng)為1的正方形ABCD中,一直角三角尺PQR的直角頂點(diǎn)P在對(duì)角線AC上移動(dòng),直角邊PQ經(jīng)過(guò)點(diǎn)D,另一直角邊與射線BC交于點(diǎn)E.
⑴試判斷PE與PD的大小關(guān)系,并證明你的結(jié)論;
⑵連接PB,試證明:△PBE為等腰三角形;
⑶設(shè)AP=x,△PBE的面積為y,
①求出y關(guān)于x 函數(shù)關(guān)系式;
②當(dāng)點(diǎn)P落在AC的何處時(shí),△PBE的面積最大,此時(shí)最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(7分)如圖,在四邊形ABCD中,AD//BC,E、F為AB上兩點(diǎn),且△DAF
≌△CBE.

求證:(1)∠A=90°;
(2)四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,小區(qū)的一角有一塊形狀為等腰梯形的空地,為了美化小區(qū),社區(qū)居委會(huì)計(jì)
劃在空地上建一個(gè)四邊形的水池,水池的四個(gè)頂點(diǎn) 恰好是梯形各邊的中點(diǎn),則水池的形狀
一定是【    】
A.等腰梯形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(8分).如圖,四邊形ABCD的對(duì)角線AC、DB相交于點(diǎn)O,現(xiàn)給出如下三個(gè)條件:.

(1)請(qǐng)你再增加一個(gè)條件:________,使得四邊形ABCD為矩形(不添加其它字母和輔助線,只填一個(gè)即可,不必證明);
(2)請(qǐng)你從中選擇兩個(gè)條件________(用序號(hào)表示,只填一種情況),使得,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案