【題目】在平行四邊形ABCD中,分別延長(zhǎng)BA,DC到點(diǎn)E,H,使得AE=AB,CH=CD,連接EH,分別交AD,BC于點(diǎn)F,G,求證:EF=GH.
【答案】證明見(jiàn)解析
【解析】
根據(jù)平行四邊形的性質(zhì)可得AE=CH,再根據(jù)平行線(xiàn)的性質(zhì)及等角代換的原理可得出∠E=∠H, ∠EAF=∠D,從而證明△AEF≌△CHG(ASA),繼而可得出結(jié)論.
證明:∵四邊形ABCD為平行四邊形,
∴∠BAD=∠DCB,AB=CD,AB∥CD.
∵AE=AB,CH=CD,
∴AE=CH.
∵∠EAF+∠BAD=180°,∠HCG+∠DCB=180°,∠BAD=∠DCB,
∴∠EAF=∠HCG.
∵AB∥CD,
∴∠AEF=∠CHG.
在△AEF和△CHG中,,
∴△AEF≌△CHG(ASA),
∴EF=HG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰三角形ABC中,∠ABC=90°,D為AC邊上中點(diǎn),過(guò)D點(diǎn)作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,則EF的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( 。.
A. “打開(kāi)電視機(jī),正在播放《動(dòng)物世界》”是必然事件
B. 某種彩票的中獎(jiǎng)概率為,說(shuō)明每買(mǎi)1000張,一定有一張中獎(jiǎng)
C. 拋擲一枚質(zhì)地均勻的硬幣一次,出現(xiàn)正面朝上的概率為
D. 想了解長(zhǎng)沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】光明中學(xué)八年級(jí)師生共466人準(zhǔn)備參加社會(huì)實(shí)踐活動(dòng),現(xiàn)預(yù)備了49座和37座兩種客車(chē)共10輛,剛好坐滿(mǎn).已知37座客車(chē)租金為每輛700元,49座客車(chē)為每輛1200元,問(wèn):
(1)49座和37座兩種客車(chē)各租了多少輛?
(2)若租用同種客車(chē),要使每位師生都有座位,應(yīng)該怎么租用才合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線(xiàn)y1=ax2+bx+c(a≠0)圖象的一部分,拋物線(xiàn)的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線(xiàn)y2=mx+n(m≠0)與拋物線(xiàn)交于A,B兩點(diǎn),下列結(jié)論: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;④拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)是(﹣1,0);⑤當(dāng)1<x<4時(shí),有y2<y1 ,
其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,解決問(wèn)題:
在處理分?jǐn)?shù)和分式問(wèn)題時(shí),有時(shí)由于分子比分母大,或者為了分子的次數(shù)告訴于分母的次數(shù),在實(shí)際運(yùn)算時(shí)往往難度比較大,這時(shí)我們可以將假分?jǐn)?shù)(分式)拆分成一個(gè)整數(shù)(或整式)與一個(gè)真分?jǐn)?shù)的和(或差)的形式,通過(guò)對(duì)簡(jiǎn)單式的分析來(lái)解決問(wèn)題,我們稱(chēng)為分離整數(shù)法,此法在處理分式或整除問(wèn)題時(shí)頗為有效,現(xiàn)舉例說(shuō)明.
材料1:將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.
解:9x+y
材料2:將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.
解:由分母x+1,可設(shè)x2﹣x+3=(x+1)(x+a)+b
則x2﹣x+3=(x+1)(x+a)+b=x2+ax+x+a+b=x2+(a+1)x+a+b
∵對(duì)于任意x上述等式成立.
∴解得:.
∴x﹣2.
這樣,分式就拆分成一個(gè)整式x﹣2與一個(gè)分式的和的形式.
(1)將分式拆分成一個(gè)整式與一個(gè)分子為整數(shù)的分式的和的形式,則結(jié)果為 .
(2)已知整數(shù)x使分式的值為整數(shù),則滿(mǎn)足條件的整數(shù)x= ;
(3)已知一個(gè)六位整數(shù)能被33整除,求滿(mǎn)足條件的x,y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=BC=4,點(diǎn)D在邊BC上,以AD為折痕,將△ABD折疊,得到△AB′D,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長(zhǎng)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)為6,∠ABC,∠ACB的角平分線(xiàn)交于點(diǎn)D,過(guò)點(diǎn)D作EF∥BC,交AB、CD于點(diǎn)E、F,則EF的長(zhǎng)度為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)y=ax2+2x+c與x軸交于A(﹣4,0),B(1,0)兩點(diǎn),過(guò)點(diǎn)B的直線(xiàn)y=kx+分別與y軸及拋物線(xiàn)交于點(diǎn)C,D.
(1)求直線(xiàn)和拋物線(xiàn)的表達(dá)式;
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在x軸的負(fù)半軸上以每秒1個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),△PDC為直角三角形?請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的t的值;
(3)如圖2,將直線(xiàn)BD沿y軸向下平移4個(gè)單位后,與x軸,y軸分別交于E,F(xiàn)兩點(diǎn),在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)M,在直線(xiàn)EF上是否存在點(diǎn)N,使DM+MN的值最?若存在,求出其最小值及點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com