【題目】如圖,在ABC中,AC6BC8,若ACBC邊上的中線BE,AD垂直相交于O點,則AB_____

【答案】2

【解析】

利用線段中點和重心性質(zhì)得到AE=3,BD=4,設(shè)OD=x,OE=y,則BO=2y,AO=2x,利用勾股定理,在RtBOD中有x2+4y2=42,在RtAOE中有4x2+y2=32,兩式相加可得x2+y2=5,然后根據(jù)整體代入的方法和勾股定理可計算出AB

解:∵AC,BC邊上的中線BE,AD垂直相交于O點,

∴點OABC的重心,AEAC3,BDBC4

設(shè)ODx,OEy,則BO2y,AO2x,

RtBOD中,x2+4y242,

RtAOE中,4x2+y232,

5x2+5y225,即x2+y25,

RtOAB中,AB24x2+4y220

AB2

故答案為:2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,直線y=x+cx軸交于A(﹣4,0),與y軸交于點C,拋物線y=x2+bx+c經(jīng)過A,C

1)求拋物線的解析式 ;

2)點E在拋物線的對稱軸上,求CE+OE的最小值;

3)如圖2所示,M是線段OA的上一個動點,過點M垂直于x軸的直線與直線AC和拋物線分別交于點P、N

①若以C,PN為頂點的三角形與APM相似,則CPN的面積為________;

②若點P恰好是線段MN的中點,點F是直線AC上一個動點,在坐標平面內(nèi)是否存在點D,使以點D,F,PM為頂點的四邊形是菱形?若存在,請直接寫出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某小區(qū)群眾對綠化建設(shè)的滿意程度,對小區(qū)內(nèi)居民進行了隨機調(diào)查,居民在非常滿意、滿意、一般和不滿意中必選且只能選一個,并將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息回答下列問題:

(1)本次調(diào)查共抽取了多少名居民?

(2)通過計算補全條形統(tǒng)計圖;

(3)若該小區(qū)一共有1350人,估計該小區(qū)居民對綠化建設(shè)非常滿意的有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠設(shè)計了一款成本為20/件的工藝品投放市場進行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價x(元件)

30

40

50

60

每天銷售量y(件)

500

400

300

200

(1)研究發(fā)現(xiàn),每天銷售量y與單價x滿足一次函數(shù)關(guān)系,求出yx的關(guān)系式;

(2)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤8000元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點E為線段OB上一點(不與O,B重合),作ECOB,交⊙O于點C,作直徑CD,過點C的切線交DB的延長線于點P,作AFPC于點F,連接CB.

(1)求證:AC平分∠FAB;

(2)求證:BC2=CECP;

(3)當AB=4=時,求劣弧的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系xOy中,O為坐標原點,直線AB分別與y軸,x軸交于A(0,4),B(30)兩點.

(1)尺規(guī)作圖:在x軸上求作一點C,使得△ABC是以為頂角的等腰三角形,并在圖中標明相應(yīng)字母;(保留作圖痕跡,不寫作法)

(2)(1)的條件下,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形OABC繞原點O逆時針旋轉(zhuǎn)30°后得到矩形OABC′,AB′與BC交于點M,延長BCBC′于N,若A,0),C01),則點N的坐標為(  )

A.,1B.1C.,1D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】行千里,致廣大是重慶人民向大家發(fā)出的旅游邀請.如圖,某建筑物上有一個旅游宣傳語廣告牌,小亮在處測得該廣告牌頂部處的仰角為,然后沿坡比為的斜坡行走米至處,在處測得廣告牌底部處的仰角為,已知與水平面平行,垂直,且米,則廣告牌頂部的距離為( )(參考數(shù)據(jù):,

A.B.C.D.

查看答案和解析>>

同步練習冊答案