【題目】如圖,在⊙O中,AB為直徑,點C為圓上一點,延長AB到點D,使CD=CA,且.
(1)求證:是⊙O的切線.
(2)分別過A、B兩點作直線CD的垂線,垂足分別為E、F兩點,過C點作AB的垂線,垂足為點G.求證:.
【答案】(1)見解析;(2)見解析.
【解析】
(1)連接OC,∠CAD=∠D=30°,由OC=OA,進而得到∠OCA=∠CAD=30°,由三角形外角定理得到∠COD=∠A+∠OCA=60°,在△OCD中由內角和定理可知∠OCD=90°即可證明;
(2)證明AC是∠EAG的角平分線,CB是∠FCG的角平分線,得到CE=CG,CF=CG,再證明△AEC∽△CFB,對應線段成比例即可求解.
解:(1)連接OC,如下圖所示:
∵CA=CD,且∠D=30°,
∴ ∠CAD=∠D=30°,
∵ OA=OC,
∴ ∠CAD=∠ACO=30°,
∴∠COD=∠CAD+∠ACO=30°+30°=60°,
∴∠OCD=180°-∠D-∠COD=180°-30°-60°=90°,
∴ OC⊥CD,
∴ CD是⊙O的切線.
(2)連接BC,如下圖所示:
∵∠COB=60°,且OC=OB,
∴△OCB為等邊三角形,∠CBG=60°,
又CG⊥AD,∴∠CGB=90°,
∴∠GCB=∠CGB-∠CBG=30°,
又∠GCD=60°,
∴CB是∠GCD的角平分線,且BF⊥CD,BG⊥CG,
∴BF=BG,
又BC=BC,
∴△BCG≌△BCF,
∴CF=CG.
∵∠D=30°,AE⊥ED,∠E=90°,
∴∠EAD=60°,
又∠CAD=30°,
∴AC是∠EAG的角平分線,且CE⊥AE,CG⊥AB
∴CE=CG,
∵∠E=∠BFC=90°,∠EAC=30°=∠BCF,
∴△AEC∽△CFB,
∴,即,
又,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,足球場上守門員在O處開出一高球,球從離地面1米的A處飛出(A在y軸上),運動員乙在距O點6米的B處發(fā)現(xiàn)球在自己頭的正上方達到最高點M,距地面約4米高,球落地后又一次彈起,據(jù)試驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.
(1)求足球開始飛出到第一次落地時,該拋物線的表達式;
(2)足球第一次落地點C距守門員多少米?(取)
(3)運動員乙要搶到足球第二個落點D,他應再向前跑多少米?(取)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個國家簽署經(jīng)貿合作協(xié)議,某廠準備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有兩個相鄰內角互余的四邊形稱為鄰余四邊形,這兩個角的夾邊稱為鄰余線.
(1)如圖1,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F分別是BD,AD上的點.求證:四邊形ABEF是鄰余四邊形.
(2)如圖2,在5×4的方格紙中,A,B在格點上,請畫出一個符合條件的鄰余四邊形ABEF,使AB是鄰余線,E,F在格點上.
(3)如圖3,在(1)的條件下,取EF中點M,連結DM并延長交AB于點Q,延長EF交AC于點N.若N為AC的中點,DE=2BE,QB=6,求鄰余線AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù)y=x2+2mx+2n,交x軸于A,B兩點(A在B的左側)
(1)當m=3時,n=4時, ①求A、B兩點坐標;②將拋物線向右平移k個單位后交x軸于M、N(M在N的左側),若B、M三等分AN,直接寫出k的值;
(2)當m=1時,若線段AB上有且只有5個點的橫坐標為整數(shù),求n的取值范圍;
(3)記A(x1,0)、B(x2,0),當m、n都是奇數(shù)時,x1、x2能否是有理數(shù)?若能,請舉例驗證,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某學校落實立德樹人根本任務,構建“五育并舉”教育體系,開設了“廚藝、園藝、電工、木工、編織”五大類勞動課程.為了解七年級學生對每類課程的選擇情況,隨機抽取了七年級若干名學生進行調查(每人只選一類最喜歡的課程),將調查結果繪制成如下兩幅不完整的統(tǒng)計圖:
(1)本次隨機調查的學生人數(shù)為 人;
(2)補全條形統(tǒng)計圖;
(3)若該校七年級共有800名學生,請估計該校七年級學生選擇“廚藝”勞動課程的人數(shù);
(4)七(1)班計劃在“園藝、電工、木工、編織”四大類勞動課程中任選兩類參加學校期末展示活動,請用列表或畫樹狀圖的方法,求恰好選中“園藝、編織”這兩類勞動課程的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“三等分角”大約是在公元前五世紀由古希臘人提出來的,借助如圖所示的“三等分角儀”能三等分任一角.這個三等分角儀由兩根有糟的棒OA、OB組成.兩根棒在O點相連并可繞O轉動,C點固定,OC=CD=DE,點D,E在槽中滑動,若∠BDE=84°.則∠AOB是______°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解學生關注熱點新聞的情況,“兩會”期間,小明對班級同學一周內收看“兩會”新聞的次數(shù)情況作了調查,調查結果統(tǒng)計如圖所示(其中男生收看次的人數(shù)沒有標出).
根據(jù)上述信息,解答下列各題:
×
(1)該班級女生人數(shù)是__________,女生收看“兩會”新聞次數(shù)的中位數(shù)是________;
(2)對于某個群體,我們把一周內收看某熱點新聞次數(shù)不低于次的人數(shù)占其所在群體總人數(shù)的百分比叫做該群體對某熱點新聞的“關注指數(shù)”.如果該班級男生對“兩會”新聞的“關注指數(shù)”比女生低,試求該班級男生人數(shù);
(3)為進一步分析該班級男、女生收看“兩會”新聞次數(shù)的特點,小明給出了男生的部分統(tǒng)計量(如表).
統(tǒng)計量 | 平均數(shù)(次) | 中位數(shù)(次) | 眾數(shù)(次) | 方差 | … |
該班級男生 | … |
根據(jù)你所學過的統(tǒng)計知識,適當計算女生的有關統(tǒng)計量,進而比較該班級男、女生收看“兩會”新聞次數(shù)的波動大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com