【題目】在平面直角坐標系中,直線y=kx+4(k≠0)交x軸于點A(8,0),交y軸于點B.
(1)k的值是 ;
(2)點C是直線AB上的一個動點,點D和點E分別在x軸和y軸上.
①如圖,點E為線段OB的中點,且四邊形OCED是平行四邊形時,求OCED的周長;
②當CE平行于x軸,CD平行于y軸時,連接DE,若△CDE的面積為,請直接寫出點C的坐標.
【答案】(1);(2)①OCED的周長8+4;②C的坐標為(﹣3,)或(11,).
【解析】
(1)根據(jù)點A的坐標,利用待定系數(shù)法可求出k值;
(2)①利用一次函數(shù)圖象上點的坐標特征可得出點B的坐標,由平行四邊形的性質(zhì)結(jié)合點E為OB的中點可得出CE是△ABO的中位線,結(jié)合點A的坐標可得出CE的長,在Rt△DOE中,利用勾股定理可求出DE的長,再利用平行四邊形的周長公式即可求出OCED的周長;
②設(shè)點C的坐標為(x,),則CE=|x|,CD=,利用三角形的面積公式結(jié)合△CDE的面積為可得出關(guān)于x的方程,解之即可得出結(jié)論.
(1)將A(8,0)代入y=kx+4,得:0=8k+4,
解得:k=.
故答案為:.
(2)①由(1)可知直線AB的解析式為y=x+4.
當x=0時,y=x+4=4,
∴點B的坐標為(0,4),
∴OB=4.
∵點E為OB的中點,
∴BE=OE=OB=2.
∵點A的坐標為(8,0),
∴OA=8.
∵四邊形OCED是平行四邊形,
∴CE∥DA,
∴,
∴BC=AC,
∴CE是△ABO的中位線,
∴CE=OA=4.
∵四邊形OCED是平行四邊形,
∴OD=CE=4,OC=DE.
在Rt△DOE中,∠DOE=90°,OD=4,OE=2,
∴DE=,
∴C平行四邊形OCED=2(OD+DE)=2(4+2)=8+4.
②設(shè)點C的坐標為(x,+4),則CE=|x|,CD=|x+4|,
∴S△CDE=CDCE=|﹣x2+2x|=,
∴x2+8x+33=0或x2+8x﹣33=0.
方程x2+8x+33=0無解;
解方程x2+8x﹣33=0,得:x1=﹣3,x2=11,
∴點C的坐標為(﹣3,)或(11,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某甜品店計劃訂購一種鮮奶,根據(jù)以往的銷售經(jīng)驗,當天的需求量與當天的最高氣溫有關(guān),現(xiàn)將去年六月份(按30天計算)的有關(guān)情況統(tǒng)計如下:
(最高氣溫與需求量統(tǒng)計表)
最高氣溫(單位:℃) | 需求量(單位:杯) |
200 | |
250 | |
400 |
(1)求去年六月份最高氣溫不低于30℃的天數(shù);
(2)若以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率,求去年六月份這種鮮奶一天的需求量不超過200杯的概率;
(3)若今年六月份每天的進貨量均為350杯,每杯的進價為4元,售價為8元,未售出的這種鮮奶廠家以1元的價格收回銷毀,假設(shè)今年與去年的情況大致一樣,若今年六月份某天的最高氣溫滿足(單位:℃),試估計這一天銷售這種鮮奶所獲得的利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=4﹣x與雙曲線y交于A,B兩點,過B作直線BC⊥y軸,垂足為C,則以OA為直徑的圓與直線BC的交點坐標是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對直角三角板如圖放置,點C在FD的延長線上,點B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,則CD的長度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富校園文化生活,提高學(xué)生的綜合素質(zhì),促進中學(xué)生全面發(fā)展,學(xué)校開展了多種社團活動.小明喜歡的社團有:合唱社團、足球社團、書法社團、科技社團(分別用字母A,B,C,D依次表示這四個社團),并把這四個字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.
(1)小明從中隨機抽取一張卡片是足球社團B的概率是 .
(2)小明先從中隨機抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機抽取一張卡片,記錄下卡片上的字母.請你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團D的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當AB=BC時,它是菱形;B. 當∠ABC=90°時,它是矩形;
C. 當AC=BD時,它是正方形;D. 當AC⊥BD時,它是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于二次函數(shù)y=mx2-x-m+1(m≠0).以下結(jié)論:
①不論m取何值,拋物線總經(jīng)過點(1,0);②若m<0,拋物線交x軸于A、B兩點,則AB>2;③當x=m時,函數(shù)值y≥0;④若m>1,則當x>1時,y隨x的增大而增大.其中正確的序號是( )
A. ①② B. ②③ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】共享單車為大眾出行提供了方便,如圖為單車實物圖,如圖為單車示意圖,AB與地面平行,點A、B、D共線,點D、F、G共線,坐墊C可沿射線BE方向調(diào)節(jié).已知,∠ABE=70°,∠EAB=45°,車輪半徑為0.3m,BE=0.4m.小明體驗后覺得當坐墊C離地面高度為0.9m時騎著比較舒適,求此時CE的長.(結(jié)果精確到1cm)參考數(shù)據(jù):sin70.≈0.94,cos70.≈0.34,tan70.≈2.75,≈1.41
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com