【題目】如圖是某小型汽車的側(cè)面示意圖,其中矩形ABCD表示該車的后備箱,在打開后備箱的過程中,箱蓋ADE可以繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角是50度時(shí),箱蓋落在的位置(如圖2),已知
(1)求點(diǎn)到的距離;(結(jié)果保留整數(shù))
(2)求兩點(diǎn)之間的距離.(結(jié)果保留整數(shù))
【答案】(1)點(diǎn)到BC的距離是144cm;(2)兩點(diǎn)間的距離為85cm.
【解析】
(1)過點(diǎn)D′作D′H⊥BC,垂足為點(diǎn)H,交AD于點(diǎn)F,利用旋轉(zhuǎn)的性質(zhì)可得出AD′=AD=96厘米,∠DAD′=60°,利用矩形的性質(zhì)可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通過解直角三角形可求出D′F的長,結(jié)合FH=DC=DE+CE及D′H=D′F+FH可求出點(diǎn)D′到BC的距離;
(2)連接AE,AE′,EE′,利用旋轉(zhuǎn)的性質(zhì)可得出AE′=AE,∠EAE′=60°,進(jìn)而可得出△AEE′是等邊三角形,利用等邊三角形的性質(zhì)可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的長度,結(jié)合EE′=AE可得出E、E′兩點(diǎn)的距離.
(1)過作,垂足H,交AD于點(diǎn)F,如圖所示
由題意得
因?yàn)樗倪?/span>ABCD形是矩形
所以
在直角三角形中
答:點(diǎn)到BC的距離是144cm.
(2)連接,過點(diǎn)A作于點(diǎn)M,如圖所示
由題意得:
答:兩點(diǎn)間的距離為85cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)在面積都相等的所有矩形中,當(dāng)其中一個(gè)矩形的一邊長為時(shí),它的另一邊長為.求周長的取值范圍.
(建立模型)
(1)設(shè)矩形相鄰兩邊的長分別為,,由題意可得,則,由周長為,得,即,滿足要求的的取值,從“圖形”角度考慮,應(yīng)是函數(shù)與 的圖象在第一象限內(nèi)有公共點(diǎn)時(shí)的取值范圍;從“代數(shù)”角度考慮,應(yīng)看作方程 有正數(shù)解時(shí)的取值范圍.
(畫圖觀察)
(2)函數(shù)的圖象如圖所示,而函數(shù)的圖象是一條與軸平行的直線.當(dāng)直線與函數(shù)的圖象有唯一公共點(diǎn)( , )時(shí),周長取得最小值為 .
(代數(shù)說理)
(3)圓圓說矩形的周長可以為,方方說矩形的周長可以為,你認(rèn)為圓圓和方方的說法對(duì)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊的邊長為3,點(diǎn)在邊上,,線段在邊上運(yùn)動(dòng),,有下列結(jié)論:
①與可能相等;②與可能相似;③四邊形面積的最大值為;④四邊形周長的最小值為.其中,正確結(jié)論的序號(hào)為( )
A.①④B.②④C.①③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,半徑為2的與軸的正半軸交于點(diǎn),點(diǎn)是上一動(dòng)點(diǎn),點(diǎn)為弦的中點(diǎn),直線與軸、軸分別交于點(diǎn)、,則面積的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,點(diǎn)為矩形對(duì)角線上一點(diǎn),過點(diǎn)作,分別交、于點(diǎn)、.若,,的面積為,的面積為,則________;
(2)如圖2,點(diǎn)為內(nèi)一點(diǎn)(點(diǎn)不在上),點(diǎn)、、、分別為各邊的中點(diǎn).設(shè)四邊形的面積為,四邊形的面積為(其中),求的面積(用含、的代數(shù)式表示);
(3)如圖3,點(diǎn)為內(nèi)一點(diǎn)(點(diǎn)不在上)過點(diǎn)作,,與各邊分別相交于點(diǎn)、、、.設(shè)四邊形的面積為,四邊形的面積為(其中),求的面積(用含、的代數(shù)式表示);
(4)如圖4,點(diǎn)、、、把四等分.請(qǐng)你在圓內(nèi)選一點(diǎn)(點(diǎn)不在、上),設(shè)、、圍成的封閉圖形的面積為,、、圍成的封閉圖形的面積為,的面積為,的面積為.根據(jù)你選的點(diǎn)的位置,直接寫出一個(gè)含有、、、的等式(寫出一種情況即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸相交于、,交軸于點(diǎn),點(diǎn)拋物線的頂點(diǎn),對(duì)稱軸與軸交于點(diǎn).
⑴.求拋物線的解析式;
⑵.如圖1,連接,點(diǎn)是線段上方拋物線上的一動(dòng)點(diǎn),于點(diǎn);過點(diǎn)作軸于點(diǎn),交于點(diǎn).點(diǎn)是軸上一動(dòng)點(diǎn),當(dāng) 取最大值時(shí).
①.求的最小值;
②.如圖2,點(diǎn)是軸上一動(dòng)點(diǎn),請(qǐng)直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O外接于△ABC,過A點(diǎn)的切線AP與BC的延長線交于點(diǎn)P,∠APB的平分線分別交AB,AC于點(diǎn)D,E,其中AE,BD(AE<BD)的長是一元二次方程x2﹣5x+6=0的兩個(gè)實(shí)數(shù)根.
(1)求證:PABD=PBAE;
(2)在線段BC上是否存在一點(diǎn)M,使得四邊形ADME是菱形?若存在,請(qǐng)給予證明,并求其面積;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l與反比例函數(shù)y=(k≠0)的圖象在第二象限交于B、C兩點(diǎn),與x軸交于點(diǎn)A,連接OC,∠ACO的角平分線交x軸于點(diǎn)D.若AB:BC:CO=1:2:2,△COD的面積為6,則k的值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com