【題目】如圖,在△ABC中,點D、E、F分別在BC、AB、CA上,且DE∥CA,DF∥BA,則下列三種說法:
(1)如果∠BAC=90°,那么四邊形AEDF是矩形
(2)如果AD平分∠BAC,那么四邊形AEDF是菱形
(3)如果AD⊥BC且AB=AC,那么四邊形AEDF是正方形 .其中正確的有 ( )
A.3個 B.2個 C.1個 D.0個
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(1,0)和(0,2).
(1)當(dāng)﹣2<x≤3時,求y的取值范圍;
(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形,與是關(guān)于點為位似中心的位似圖形,它們的頂點都在小正方形的頂點上。
(1)在圖中畫出位似中心點,與的相似比是_________;
(2)以點為位似中心,再畫一個,使它與的相似比等于
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為8cm,動點P從點A出發(fā)以秒的速度沿AC方向向終點C運動,同時動點Q從點C出發(fā)以秒的速度沿CB方向向終點B運動,過點P、Q分別作邊AB的垂線段PM、QN,垂足分別為點M、設(shè)P、Q兩點運動時間為t秒,四邊形MNQP的面積為.
為何值時,為等邊三角形?
是否存在某一時刻t,使四邊形MNQP的面積S等于的面積的?若存在,求出此時t的值;若不存在,說明理由.
連接PN、QM交于點D,是否存在某一時刻t,使?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax+bx+4與x軸交于點A(-3,0)和B(2,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)如圖1,若點D為CB的中點,將線段DB繞點D旋轉(zhuǎn),點B的對應(yīng)點為點G,當(dāng)點G恰好落在拋物線的對稱軸上時,求點G的坐標(biāo);
(3)如圖2,若點D為直線BC或直線AC上的一點,E為x軸上一動點,拋物線y=ax+bx+4對稱軸上是否存在點F,使以B,D,F(xiàn),E為頂點的四邊形為菱形?若存在,請求出點F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC,BD交于點F,點E是BD上一點,且∠BAC=∠BDC=∠DAE.
(1)求證:△ABE∽△ACD;
(2)若BC=2,AD=6,DE=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要求340名學(xué)生進(jìn)行社會調(diào)查,每人須完成3﹣6份報告.調(diào)查結(jié)束后隨機抽查了20名學(xué)生每人完成報告的份數(shù),并分為四類,A:3份;B:4份;C:5份;D:6份.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯誤.
回答問題:
(1)寫出條形圖中存在的錯誤,并說明理由;
(2)寫出這20名學(xué)生每人完成報告份數(shù)的眾數(shù)、中位數(shù);
(3)在求這20名學(xué)生每人完成報告份數(shù)的平均數(shù)時,小靜是這樣分析的:
第一步求平均數(shù)的公式是=;
第二步在該問題中,n=4,x1=3,x2=4,x3=5,x4=6;
第三步:==4.5(份)
①小靜的分析是從哪一步開始出現(xiàn)錯誤的?
②請你幫她計算出正確的平均數(shù),并估計這340名學(xué)生共完成報告多少份.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有紅、黃兩個盒子,紅盒子中裝有編號分別為1、2、3、4的四個紅球,黃盒子中裝有編號為1、2、3的三個黃球.甲、乙兩人玩摸球游戲,游戲規(guī)則為:甲從紅盒子中每次摸出一個小球,乙從黃盒子中每次摸出一個小球,若兩球編號之和為奇數(shù),則甲勝,否則乙勝.
(1)試用列表或畫樹形圖的方法,求甲獲勝的概率;
(2)請問這個游戲規(guī)則對甲、乙雙方公平嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com