如圖,小明同學測量一個光盤的直徑,他只有一把直尺和一塊三角板,他將直尺、光盤和三角板如圖放置于桌面上,并量出AB=3cm,則此光盤的直徑是( 。
分析:設圓盤圓心為O,連接OC,OA,OB,由AC、AB都與圓O相切,利用切線長定理得到AO平分∠BAC,且OC垂直于AC,OB垂直于AB,可得出∠CAO=∠BAO=60°,得到∠AOB=30°,利用30°所對的直角邊等于斜邊的一半求出OA的長,再利用勾股定理求出OB的長,即可確定出光盤的直徑.
解答:解:設圓盤圓心為O,連接OC,OA,OB,
∵AC、AB都與圓O相切,
∴AO平分∠BAC,OC⊥AC,OB⊥AB,
∴∠CAO=∠BAO=60°,
∴∠AOB=30°,
在Rt△AOB中,AB=3cm,∠AOB=30°,
∴OA=6cm,
根據(jù)勾股定理得:OB=
OA2-AB2
=3
3
cm,
則光盤的直徑為6
3
cm.
故選D
點評:此題考查了切線的性質(zhì),切線長定理,含30°直角三角形的性質(zhì),以及勾股定理,熟練掌握切線的性質(zhì)是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)如圖一:小明想測量一棵樹的高度AB,在陽光下,小明測得一根與地面垂直、長為1米的竹竿的影長為0.8米.同時另一名同學測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上(如圖),墻壁上的影長CD為1.5米,落在地面上的影長BC為3米,則樹高AB為多少米.
(2)如圖二:在陽光下,小明在某一時刻測得與地面垂直、長為1m的桿子在地面上的影子長為2m,在斜坡上影長為1.5m,他想測量電線桿AB的高度,但其影子恰好落在土坡的坡面CD和地面BC上,量得CD=3m,BC=10m,求電線桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

測量物體高度
(1)小明想測量一棵樹的高度AB,在陽光下,小明測得一根長為1米的竹竿的影長為0.6米.同時另一名同學測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上(如圖),其影長為1.2米,落在地面上的影長為2.4米,則樹高AB為多少米.

(2)小明在某一時刻測得1m的桿子在陽光下的影子長為2m,他想測量電線桿AB的高度,但其影子恰好落在土坡的坡面CD和地面BC上,量得CD=2m,BC=10m,CD與地面成45°.
求電線桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

測量物體高度
(1)小明想測量一棵樹的高度AB,在陽光下,小明測得一根長為1米的竹竿的影長為0.6米.同時另一名同學測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上(如圖),其影長為1.2米,落在地面上的影長為2.4米,則樹高AB為多少米.
精英家教網(wǎng)


(2)小明在某一時刻測得1m的桿子在陽光下的影子長為2m,他想測量電線桿AB的高度,但其影子恰好落在土坡的坡面CD和地面BC上,量得CD=2m,BC=10m,CD與地面成45°.
求電線桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖一:小明想測量一棵樹的高度AB,在陽光下,小明測得一根與地面垂直、長為1米的竹竿的影長為0.8米.同時另一名同學測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上(如圖),墻壁上的影長CD為1.5米,落在地面上的影長BC為3米,則樹高AB為多少米.
(2)如圖二:在陽光下,小明在某一時刻測得與地面垂直、長為1m的桿子在地面上的影子長為2m,在斜坡上影長為1.5m,他想測量電線桿AB的高度,但其影子恰好落在土坡的坡面CD和地面BC上,量得CD=3m,BC=10m,求電線桿的高度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年浙江省杭州市十五中九年級(上)月考數(shù)學試卷(11月份)(解析版) 題型:解答題

測量物體高度
(1)小明想測量一棵樹的高度AB,在陽光下,小明測得一根長為1米的竹竿的影長為0.6米.同時另一名同學測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上(如圖),其影長為1.2米,落在地面上的影長為2.4米,則樹高AB為多少米.

(2)小明在某一時刻測得1m的桿子在陽光下的影子長為2m,他想測量電線桿AB的高度,但其影子恰好落在土坡的坡面CD和地面BC上,量得CD=2m,BC=10m,CD與地面成45°.
求電線桿的高度.

查看答案和解析>>

同步練習冊答案