【題目】如圖,在中, ,是的垂直平分線,交于點,交于點.(1)、若∠BAE=200,求的度數(shù)。(2)、若AB=6,AC=10,求BE的長。
【答案】(1)、35°;(2)、
【解析】
試題分析:(1)、根據(jù)線段中垂線的性質(zhì)可得∠C=∠EAC,然后根據(jù)∠BAC+∠C=90°得出答案;(3)、首先根據(jù)勾股定理得出BC=8,然后設(shè)BE=x,則AE=CE=8-x,根據(jù)直角△ABE的勾股定理得出x的值.
試題解析:(1)、∵ED是AC的垂直平分線 ∴EA=EC ∴∠C=∠EAC ∴∠CAB=∠EAC+20°=∠C+20°
∵∠C+∠CAB=90° ∴2∠C+20°=90° ∴∠C=35°
(2)、∵AB=6,AC=10 ∴BC=8 設(shè)BE=x,則AE=CE=8-x
在Rt△ABE中,AE2=AB2+BE2 (8-x)2=62+x2 解得x= ∴BE=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市有一塊長為(3a+b)米,寬為(2a+b)米的長方形地塊,規(guī)劃部門計劃將陰影部分進(jìn)行綠化,中間將修建一座雕像,則綠化的面積是多少平方米?并求出當(dāng)a=3,b=2時的綠化面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點,平行四邊形ABCD的邊BC在x軸上,D點在y軸上,C點坐標(biāo)為(2,0),BC=6,∠BCD=60°,點E是AB上一點,AE=3EB,⊙P過D,O,C三點,拋物線y=ax2+bx+c過點D,B,C三點.
(1)請直接寫出點B、D的坐標(biāo):B( ),D( );
(2)求拋物線的解析式;
(3)求證:ED是⊙P的切線;
(4)若點M為拋物線的頂點,請直接寫出平面上點N的坐標(biāo),使得以點B,D,M,N為頂點的四邊形為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯誤的是( )
A. 兩組對邊分別相等的四邊形是平行四邊形
B. 圓內(nèi)最大的弦是直徑
C. 有三條邊對應(yīng)相等的兩個三角形全等
D. 長度相等的弧是等弧
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.下列判斷: ①當(dāng)x>2時,M=y2;②當(dāng)x<0時,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x= 1 .其中正確的有( )
A.1個 B.2個 C. 3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圓的周長C=2πR中,常量與變量分別是( 。
A.2是常量,C、π、R是變量
B.2π是常量,C、R是變量
C.C、2是常量,R是變量
D.2是常量,C、R是變量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《算學(xué)寶鑒》中記載了我國數(shù)學(xué)家楊輝提出的一個問題:“直田積八百六十四步,之云闊不及長十二步,問長闊共幾何?”譯文:一個矩形田地的面積等于864平方步,且它的寬比長少12步,問長與寬的和是多少步?如果設(shè)矩形田地的長為x步,可列方程為_________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com