【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1與CD交于點O,則四邊形AB1OD的面積是( )
A.B.C.D.
【答案】C
【解析】
連接AC1,AO,根據(jù)四邊形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三點共線,在Rt△C1D1A中,由勾股定理求出AC1,進而求出DC1=OD,根據(jù)三角形的面積計算即可.
連接AC1,
∵四邊形AB1C1D1是正方形,
∴∠C1AB1=×90°=45°=∠AC1B1,
∵邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)45°后得到正方形AB1C1D1,
∴∠B1AB=45°,
∴∠DAB1=90°-45°=45°,
∴AC1過D點,即A、D、C1三點共線,
∵正方形ABCD的邊長是1,
∴四邊形AB1C1D1的邊長是1,
在Rt△C1D1A中,由勾股定理得:AC1=,
則DC1=-1,
∵∠AC1B1=45°,∠C1DO=90°,
∴∠C1OD=45°=∠DC1O,
∴DC1=OD=-1,
∴S△ADO=×ODAD=,
∴四邊形AB1OD的面積是=2×=-1,
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,點D,E分別是AB,AC的中點,點G,F在BC邊上(均不與端點重合),DG∥EF.將△BDG繞點D順時針旋轉(zhuǎn)180°,將△CEF繞點E逆時針旋轉(zhuǎn)180°,拼成四邊形MGFN,則四邊形MGFN周長l的取值范圍是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx+3經(jīng)過點A(3,0)和點B(4,3).
(1)求這條拋物線所對應的二次函數(shù)的表達式.
(2)直接寫出該拋物線開口方向和頂點坐標.
(3)直接在所給坐標平面內(nèi)畫出這條拋物線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為⊙O直徑,AB=12,AD平分∠BAC,交BC于點 E,交⊙O于點D,連接BD.
(1)求證:∠BAD=∠CBD;
(2)若∠AEB=125°,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=4,tanB=2,以AB的中點D為圓心,r為半徑作⊙D,如果點B在⊙D內(nèi),點C在⊙D外,那么r可以。ā 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆椒ń庀铝幸辉畏匠?/span>
(1) (2x-1)2=25
(2) 3x2-6x-1=0
(3) x2-4x-396=0
(4) (2-3x)+(3x-2)2=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有四個小球,上面分別標有數(shù)字-2,-1,0,1,它們除了數(shù)字不一樣外,其它完全相同.
(1)隨機從袋子中摸出一個小球,摸出的球上面標的數(shù)字為正數(shù)的概率是__________.
(2)小聰先從袋子中隨機摸出一個小球,記下數(shù)字作為點的縱坐標,如圖,已知四邊形的四個頂點的坐標分別為,,,,請用畫樹狀圖或列表法,求點落在四邊形所圍成的部分內(nèi)(含邊界)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com