【題目】如圖,在平面直角坐標系中,直線與軸, 軸分別交于點A、B,拋物線經過點A和點B,與x軸的另一個交點為C,動點D從點A出發(fā),以每秒1個單位長度的速度向O點運動,同時動點E從點B出發(fā),以每秒2個單位長度的速度向A點運動,設運動的時間為t秒,0﹤t﹤5.
(1)求拋物線的解析式;
(2)當t為何值時,以A、D、E為頂點的三角形與△AOB相似;
(3)當△ADE為等腰三角形時,求t的值;
(4)拋物線上是否存在一點F,使得以A、B、D、F為頂點的四邊形是平行四邊形?若存在,直接寫出F點的坐標;若不存在,說明理由.
【答案】(1)拋物線的解析式為;
(2)t的值為或;
(3)t的值為或或;
(4)符合條件的點F存在,共有兩個(4,8),,-8).
【解析】(1)由B、C兩點的坐標,利用待定系數(shù)法可求得拋物線的解析式;(2)利用△ADE∽△AOB和△AED∽△AOB即可求出t的值;(3)過E作EH⊥x軸于點H,過D作DM⊥AB于點M即可求出t的值;(4)分當AD為邊時,當AD為對角線時符合條件的點F的坐標.
解:(1)A(6,0),B(0,8),依題意知,解得,
∴.
(2)∵ A(6,0),B(0,8),∴OA=6,OB=8,AB=10,∴AD=t,AE=10-2t,
①當△ADE∽△AOB時, ,∴,∴;
②當△AED∽△AOB時, ,∴,∴;
綜上所述,t的值為或.
(3) ①當AD=AE時,t=10-2t,∴;
②當AE=DE時,過E作EH⊥x軸于點H,則AD=2AH,由△AEH∽△ABO得,AH=,∴,∴;
③當AD=DE時,過D作DM⊥AB于點M,則AE=2AM,由△AMD∽△AOB得,AM=,∴,∴;
綜上所述,t的值為或或.
(4) ①當AD為邊時,則BF∥x軸,∴,求得x=4,∴F(4,8);
②當AD為對角線時,則,∴,解得,∵x﹥0,∴,∴.
綜上所述,符合條件的點F存在,共有兩個(4,8),,-8).
“點睛”本題考查二次函數(shù)綜合題、相似三角形等知識,解題的關鍵是學會待定系數(shù)法確定函數(shù)解析式,學會分類討論,用方程的思想解決問題,屬于中考壓軸題.
科目:初中數(shù)學 來源: 題型:
【題目】
(1)約定“※”為一種新的運算符號,先觀察下列各式:
1※3=1×4+3=7;3※(﹣1)=3×4﹣1=11;5※ =5×4+ = ;
5※4=5×4+4=24;4※(﹣3)=4×4﹣3=13;(﹣ )※0=(﹣ )×4+0=﹣
…
根據(jù)以上的運算規(guī)則,寫出a※b= .
(2)根據(jù)(1)中約定的a※b的運算規(guī)則,求解問題①和②
①若(x﹣3)※x的值等于13,求x的值;
②若2m﹣n=2,請計算:(m﹣n)※(2m+n).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同學們,我們曾經研究過的正方形網格,得到了網格中正方形的總數(shù)的表達式為12+22+32+…+n2.但n為100時,應如何計算正方形的具體個數(shù)呢?下面我們就一起來探究并解決這個問題.首先,通過探究我們已經知道: …時,我們可以這樣做:
(1)觀察并猜想:
;
=
=;
=
= ( );…
(2)歸納結論:
……
=…
=( )+[ ]
= +
= .
(3)實踐應用:
通過以上探究過程,我們就可以算出當n為100時,正方形網格中正方形的總個數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形 中, , ,點 是 邊上一點,過點 作 ,交射線 于點 ,交射線 于點 .
(1)如圖1,若 ,則 度;
(2)當以 , , 為頂點的三角形是等邊三角形時,依題意在圖2中補全圖形并求 的長;
(3)過點 作 ∥ 交射線 于點 ,請?zhí)骄浚寒? 為何值時,以 , , , 為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、F、B、C是半圓O上的四個點,四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點E,過點C作CD∥OF交AB的延長線于點D,延長AF交直線CD于點H.
(1)求證:CD是半圓O的切線;
(2)若DH=,求EF的長和半徑OA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(﹣8,0),點P的坐標為(-,0),直線y=x+b過點A,交y軸于點B,以點P為圓心,以PA為半徑的圓交x軸于點C.
(1)判斷點B是否在⊙P上?說明理由.
(2)求過A、B、C三點的拋物線的解析式;并求拋物線與⊙P另外一個交點為D的坐標.
(3)⊙P上是否存在一點Q,使以A、P、B、Q為頂點的四邊形是菱形?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(1)如圖①,∠AOB=60°,OD平分∠BOC,OE平分∠AOC,則∠EOD=度;
(2)若∠AOB=90°,其它條件不變,則∠EOD=;
(3)若∠AOB=α,其它條件不變,則∠EOD= .
(4)類比應用:如圖②,已知線段AB,C是線段AB上任一點,D、E分別是AC、CB的中點,試猜想DE與AB的數(shù)量關系為 , 并寫出求解過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a、b、c是△ABC的三邊長,且方程a(1+x2)+2bx﹣c(1﹣x2)=0的兩根相等,則△ABC為( )
A. 等腰三角形 B. 直角三角形 C. 等邊三角形 D. 任意三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有一副直角三角板(角度分別為30°、60°、90°和45°、45°、90°),如圖(1)所示,其中一塊三角板的直角邊AC垂直于數(shù)軸,AC的中點過數(shù)軸原點O,AC=8,斜邊AB交數(shù)軸于點G,點G對應數(shù)軸上的數(shù)是4;另一塊三角板的直角邊AE交數(shù)軸于點F,斜邊AD交數(shù)軸于點H.
(1)如果△AGH的面積是10,△AHF的面積是8,則點F對應的數(shù)軸上的數(shù)是 , 點H對應的數(shù)軸上的數(shù)是;
(2)如圖(2),設∠AHF的平分線和∠AGH的平分線交于點M,若∠HAO=a,試用a來表示∠M的大小:(寫出推理過程)
(3)如圖(2),設∠AHF的平分線和∠AGH的平分線交于點M,設∠EFH的平分線和
∠FOC的平分線交于點N,求∠N+∠M的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com