【題目】在平行四邊形ABCD中,AC=10,BD=6,則邊長AB,AD的可能取值為(   ).

A.AB=4,AD=4B.AB=4,AD=7C.AB=9,AD=2D.AB=6AD=2

【答案】B

【解析】

利用平行四邊形的性質(zhì)知,平行四邊形的對角線互相平分,再結(jié)合三角形三邊關(guān)系分別進行分析即可.

解:因為:平行四邊形ABCDAC=10,BD=6

所以:OA=OC=5,OB=OD=3,

所以:

所以:CD錯誤,

又因為:四邊形ABCD是平行四邊形,

AD=BC、∵AD=4, BC=4,

AB=4,AC=10 AB+BCAC,

∴不能組成三角形,故此選此選項錯誤;

因為:AB=4,AD=7,所以:

三角形存在.

故選B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點,直線無論取何值,直線總過定點

1)求定點的坐標;

2)如圖1,若點為直線(除外)一動點,過點軸的垂線交直線于點,在直線上,距離點為個單位,點橫坐標為的面積為,求與的函數(shù)關(guān)系式;

3)若直線關(guān)于軸對稱后再向上平移個單位得到直線,如圖2, 是直線上兩點,點為第一象限內(nèi)(兩點除外)的一點,且,直線分別交軸于點兩點,問線段有什么數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在東西方向的海岸線l上有一長為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時刻測得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距千米的A處;經(jīng)過40分鐘,又測得該輪船位于O的正北方向,且與O相距20千米的B處.

(1)求該輪船航行的速度;

(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)商店以2元的批發(fā)價進了一批紀念品.經(jīng)調(diào)查發(fā)現(xiàn),每個定價3元,每天可以能賣出500件,而且定價每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀念品售價不能超過批發(fā)價的2.5倍.

1)當每個紀念品定價為3.5元時,商店每天能賣出________件;

2)如果商店要實現(xiàn)每天800元的銷售利潤,那該如何定價?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形紙片 ABCD 中,BD90°,點 EF 分別在邊 BC,CD 上,將 AB,AD 分別沿 AE,AF 折疊,點 BD 恰好都和點 G 重合,EAF45°

1求證:四邊形 ABCD 是正方形;

2 ECFC1,求 AB 的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠=∠EAF,∠BAE,則∠CEF________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB=OC=3,頂點為M

1)求二次函數(shù)的解析式;

2)點P為線段BM上的一個動點,過點Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點N,使NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)圖象的對稱軸是x+3=0,圖象經(jīng)過(1,﹣6),且與y軸的交點為(0,).

(1)求這個二次函數(shù)的解析式;

(2)當x為何值時,這個函數(shù)的函數(shù)值為0;

(3)當x在什么范圍內(nèi)變化時,這個函數(shù)的函數(shù)值yx的增大而增大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一次測繪活動中,某同學站在點A處觀測停放于B、C兩處的小船測得船B在點A北偏東75°方向150米處,船C在點A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).

查看答案和解析>>

同步練習冊答案