【題目】在平面直角坐標(biāo)系中,已知二次函數(shù)y=k(x﹣ax﹣b),其中a≠b.

(1)若此二次函數(shù)圖象經(jīng)過點(diǎn)(0,k),試求a,b滿足的關(guān)系式.

(2)若此二次函數(shù)和函數(shù)y=x2﹣2x的圖象關(guān)于直線x=2對(duì)稱,求該函數(shù)的表達(dá)式.

(3)若a+b=4,且當(dāng)0≤x≤3時(shí),有1≤y≤4,求a的值.

【答案】(1)ab=1;(2)y=x2﹣6x+8;(3)a=

【解析】

(1)將(0,k)代入y=k(x﹣ax﹣b),整理后即可得;

(2)由(1)知,k=1,易得函數(shù)y=x2﹣2xx軸交點(diǎn)的坐標(biāo)為(0,0)、(2,0),由對(duì)稱性可知此二次函數(shù)與x軸的交點(diǎn)坐標(biāo)為(2,0),(4,0),由此即可求得解析式;

(3)根據(jù)a+b=4,可得函數(shù)表達(dá)式變形為y=k(x﹣a)(x+a﹣4),然后分k>0、k<0兩種情況分別討論即可得.

1)將(0,k)代入y=k(x﹣ax﹣b),得kab=k,

k≠0,

ab=1;

(2)由(1)知,k=1,

易得函數(shù)y=x2﹣2xx軸交點(diǎn)的坐標(biāo)為(0,0)、(2,0),

因?yàn)榇硕魏瘮?shù)和函數(shù)y=x2﹣2x的圖象關(guān)于直線x=2對(duì)稱,

所以此二次函數(shù)與x軸的交點(diǎn)坐標(biāo)為(2,0),(4,0),

∴該函數(shù)解析式為:y=(x﹣2)(x﹣4)=x2﹣6x+8;

(3)a+b=4,

∴函數(shù)表達(dá)式變形為y=k(x﹣a)(x+a﹣4).

①當(dāng)k>0時(shí),則根據(jù)題意可得:當(dāng)x=2,y=1;

當(dāng)x=0時(shí),y=4,

消去k,整理,得

3a2﹣12a+16=0,

∵△=﹣48<0,

∴此方程無解;

②當(dāng)k<0時(shí),則根據(jù)題意可得:當(dāng)x=2,y=4,

當(dāng)x=0時(shí),y=1,

,

消去k,整理,得,

3a2﹣12a﹣4=0,

解得a=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),P為ABC所在平面上一點(diǎn),且APB=BPC=CPA=120°,則點(diǎn)P叫做ABC的費(fèi)馬點(diǎn).

(1)如果點(diǎn)P為銳角ABC的費(fèi)馬點(diǎn),且ABC=60°.

①求證:ABP∽△BCP;

②若PA=3,PC=4,則PB=

(2)已知銳角ABC,分別以AB、AC為邊向外作正ABE和正ACD,CE和BD 相交于P點(diǎn).如圖(2)

①求CPD的度數(shù);

②求證:P點(diǎn)為ABC的費(fèi)馬點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是Rt△ABC斜邊BC上的高.

(1)尺規(guī)作圖:作∠C的平分線,交AB于點(diǎn)E,交AD于點(diǎn)F(不寫作法,必須保留作圖痕跡,標(biāo)上應(yīng)有的字母);

(2)在(1)的條件下,過F畫BC的平行線交AC于點(diǎn)H,線段FH與線段CH的數(shù)量關(guān)系如何?請(qǐng)予以證明;

(3)在(2)的條件下,連結(jié)DEDH.求證:ED⊥HD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形.對(duì)一個(gè)各條邊都相等的凸多邊形(邊數(shù)大于3),可以由若干條對(duì)角線相等判定它是正多邊形.例如,各條邊都相等的凸四邊形,若兩條對(duì)角線相等,則這個(gè)四邊形是正方形.

1)已知凸五邊形的各條邊都相等.

①如圖1,若,求證:五邊形是正五邊形;

②如圖2,若,請(qǐng)判斷五邊形是不是正五邊形,并說明理由:

2)判斷下列命題的真假.(在括號(hào)內(nèi)填寫

如圖3,已知凸六邊形的各條邊都相等.

①若,則六邊形是正六邊形;(   

②若,則六邊形是正六邊形.    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)分解因式

2)分解因式

3)計(jì)算

4)計(jì)算

5)解分式方程

6)解分式方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,△ABD是等腰直角三角形,∠BAD=90°,AEBD于點(diǎn)E,連CD分別交AE,AB于點(diǎn)F,G,過點(diǎn)AAHCDBD于點(diǎn)H.則下列結(jié)論:①∠ADC=15°;AF=AG;AH=DF;④△AFG∽△CBG;AF=(﹣1)EF.其中正確結(jié)論的個(gè)數(shù)為( 。

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交ACAB邊于E,F點(diǎn)若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過A,C兩點(diǎn),且與x軸交于另一點(diǎn)B點(diǎn)B在點(diǎn)A右側(cè)

1求拋物線的解析式及點(diǎn)B坐標(biāo);

2若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長的最大值;

3試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車已越來越多地進(jìn)入到各個(gè)家庭.某大型超市為緩解停車難問題,建筑設(shè)計(jì)師提供了樓頂停車場的設(shè)計(jì)示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

同步練習(xí)冊答案