【題目】如圖,在△ABC中,∠CAB的平分線AD與BC的垂直平分線DE交于點(diǎn)D,DM⊥AB于M,DN⊥AC的延長線于N.
(1)求證:BM=CN;
(2)若AB=8,AC=4,求BM的長.
【答案】(1)見解析;(2)2
【解析】
(1)根據(jù)角平分線的性質(zhì)和線段垂直平分線的性質(zhì)可得到DM=DN,DB=DC,根據(jù)HL證明Rt△DMB≌Rt△DNC,即可得出BM=CN;
(2)由HL證明Rt△DMA≌Rt△DNA,得出AM=AN,證出2BM=AB-AC=4,即可得出BM=2.
(1)證明:連接BD、CD,如圖所示:
∵AD是∠CAB的平分線,DM⊥AB,DN⊥AC,
∴DM=DN,
∵DE垂直平分線BC,
∴DB=DC,
在Rt△DMB和Rt△DNC中,
∴Rt△DMB≌Rt△DNC(HL),
∴BM=CN;
(2) 由(1)得:BM=CN,
∵AD是∠CAB的平分線,DM⊥AB,DN⊥AC,
∴DM=DN,
在Rt△DMA和Rt△DNA中,
∴Rt△DMA≌Rt△DNA(HL),
∴AM=AN,
∵AM=AB-BM,AN=AC+CN,
∴AB-BM=AC+CN,
∴2BM=AB-AC=8-4=4,
∴BM=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校美術(shù)組要購買鉛筆和橡皮,按照商店規(guī)定,若同時(shí)購買60支鉛筆和30塊橡皮,則需按零售價(jià)購買,共需支付30元;若同時(shí)購買90支鉛筆和60塊橡皮,則可按批發(fā)價(jià)購買,共需支付40.5元.已知每支鉛筆的批發(fā)價(jià)比零售價(jià)低0.05元,每塊橡皮的批發(fā)價(jià)比零售價(jià)低0.10元.求每支鉛筆和每塊橡皮的批發(fā)價(jià)各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,M是BC邊上的點(diǎn)(不與B,C兩點(diǎn)重合),AB=AM,點(diǎn)B關(guān)于直線AM對稱的點(diǎn)是N,連接DN,設(shè)∠ABC,∠CDN的度數(shù)分別為,,則關(guān)于的函數(shù)解析式是_______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)(1)【問題發(fā)現(xiàn)】小明遇到這樣一個(gè)問題:
如圖1,△ABC是等邊三角形,點(diǎn)D為BC的中點(diǎn),且滿足∠ADE=60°,DE交等邊三角形外角平分線CE所在直線于點(diǎn)E,試探究AD與DE的數(shù)量關(guān)系.
(1)小明發(fā)現(xiàn),過點(diǎn)D作DF//AC,交AC于點(diǎn)F,通過構(gòu)造全等三角形,經(jīng)過推理論證,能夠使問題得到解決,請直接寫出AD與DE的數(shù)量關(guān)系: ;
(2)【類比探究】如圖2,當(dāng)點(diǎn)D是線段BC上(除B,C外)任意一點(diǎn)時(shí)(其它條件
不變),試猜想AD與DE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)【拓展應(yīng)用】當(dāng)點(diǎn)D在線段BC的延長線上,且滿足CD=BC(其它條件不變)時(shí),
請直接寫出△ABC與△ADE的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△ABC繞頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到Rt△DFC,若直線DF垂直平分AB,垂足為點(diǎn)E,連接BF,CE,且BC=2.下面四個(gè)結(jié)論:
①BF=;
②∠CBF=45°;
③∠CED=30°;
④△ECD的面積為,
其中正確的結(jié)論有_____.(填番號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1,在平面直角坐標(biāo)系xOy中,直線l1,l2都經(jīng)過點(diǎn)A(﹣6,0),它們與y軸的正半軸分別相交于點(diǎn)B,C,且∠BAO=∠ACO=30
(1)求直線l1,l2的函數(shù)表達(dá)式;
(2)設(shè)P是第一象限內(nèi)直線l1上一點(diǎn),連接PC,有S△ACP=24.M,N分別是直線l1,l2上的動(dòng)點(diǎn),連接CM,MN,MP,求CM+MN+NP的最小值;
(3)如圖2,在(2)的條件下,將△ACP沿射線PA方向平移,記平移后的三角形為△A′C′P′,在平移過程中,若以A,C',P為頂點(diǎn)的三角形是等腰三角形,請直接寫出所有滿足條件的點(diǎn)C′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明某天上午9時(shí)騎自行車離開家,15時(shí)回到家,他有意描繪了離家的距離與時(shí)間的變化情況(如圖所示).
(1)圖象表示了哪兩個(gè)變量的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?
(2)10時(shí)和13時(shí),他分別離家多遠(yuǎn)?
(3)他到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?
(4)11時(shí)到12時(shí)他行駛了多少千米?
(5)他可能在哪段時(shí)間內(nèi)休息,并吃午餐?
(6)他由離家最遠(yuǎn)的地方返回時(shí)的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是⊙O的直徑,點(diǎn)是的中點(diǎn),連接并延長至點(diǎn),使,點(diǎn)是上一點(diǎn),且, 的延長線交的延長線于點(diǎn), 交⊙O于點(diǎn),連接.
(1)求證: 是⊙O的切線;
(2)當(dāng)時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商店購進(jìn)了足球和排球共20個(gè),一共花了1360元,進(jìn)價(jià)和售價(jià)如表:
足球 | 排球 | |
進(jìn)價(jià)(元/個(gè)) | 80 | 50 |
售價(jià)(元/個(gè)) | 95 | 60 |
(l)購進(jìn)足球和排球各多少個(gè)?
(2)全部銷售完后商店共獲利潤多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com