分析 (1)連接AC,由勾股定理求得AC的長,由AC、AD、DC的長度關(guān)系和勾股定理的逆定理即可得出結(jié)論;
(2)四邊形ABCD由Rt△ABC和Rt△DAC構(gòu)成,求出四邊形的面積,則容易求解.
解答 (1)證明:連接AC,如圖所示:
在Rt△ABC中,AC2=AB2+BC2=32+42=52,
∴AC=5.
在△DAC中,CD2=132,AD2=122,
而122+52=132,
即AC2+AD2=CD2,
∴∠DAC=90°,
即△ACD是直角三角形;
(2)解:S四邊形ABCD=S△BAC+S△DAC=$\frac{1}{2}$•BC•AB+$\frac{1}{2}$DC•AC,
=$\frac{1}{2}$×4×3+$\frac{1}{2}$×12×5=36.
所以需費用36×30=1080(元);
答:這塊全部種草的費用是1080元.
點評 本題考查了勾股定理及其逆定理的相關(guān)知識,通過勾股定理由邊與邊的關(guān)系也可證明直角三角形,這樣解題較為簡單.
科目:初中數(shù)學 來源: 題型:解答題
售價x(元/件) | 100 | 110 | 120 | 130 | … |
月銷量y(件) | 200 | 180 | 160 | 140 | … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
進價(元/臺) | 售價(元/臺) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com