【題目】線段AB上有一動(dòng)點(diǎn)C(不與A,B重合),分別以AC,BC為邊向上作等邊△ACM和等邊△BCN,點(diǎn)D是MN的中點(diǎn),連結(jié)AD,BD,在點(diǎn)C的運(yùn)動(dòng)過程中,有下列結(jié)論:①△ABD可能為直角三角形;②△ABD可能為等腰三角形;③△CMN可能為等邊三角形;④若AB=6,則AD+BD的最小值為. 其中正確的是( 。
A.②③B.①②③④C.①③④D.②③④
【答案】D
【解析】
根據(jù)題意并結(jié)合圖形,我們可以得出當(dāng)C為AB的中點(diǎn)時(shí),可判斷所給結(jié)論正確與否.
解:
當(dāng)C為AB中點(diǎn)時(shí),有圖如下,
∵與為等邊三角形,
∵C為AB中點(diǎn),
∴AM=AC=MC=NC=BC=NB,MD=ND,
∵
∴
∴為等邊三角形,③正確;
∵
∴
∴AD=BD,△ABD此時(shí)為等腰三角形,②正確;
當(dāng)C為AB中點(diǎn)時(shí),AD+BD值最小,
∵D為MN的中點(diǎn),
∴CD為MN的垂直平分線,
∴,∵AB=6,
∴
∴
∵AD=BD
∴AD+BD=,④正確;
若△ABD可能為直角三角形,則,
∴CD為AB的垂直平分線
∴
∴AC=CD,與所求結(jié)論不符,①錯(cuò)誤.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組在“用頻率估計(jì)概率”的試驗(yàn)中,統(tǒng)計(jì)了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗(yàn)最有可能的是( 。
A. 在裝有1個(gè)紅球和2個(gè)白球(除顏色外完全相同)的不透明袋子里隨機(jī)摸出一個(gè)球是“白球”
B. 從一副撲克牌中任意抽取一張,這張牌是“紅色的”
C. 擲一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是“正面朝上”
D. 擲一個(gè)質(zhì)地均勻的正六面體骰子,落地時(shí)面朝上的點(diǎn)數(shù)是6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:點(diǎn)A、B、C、D在⊙O上,AB=CD,下列結(jié)論:①∠AOC=∠BOD;②∠BOD=2∠BAD;③AC=BD;④∠CAB=∠BDC;⑤∠CAO+∠CDO=180°.其中正確的個(gè)數(shù)為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).
其中正確結(jié)論的有( 。
A. ①②③ B. ①③④ C. ③④⑤ D. ②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線y=x2+bx﹣c經(jīng)過直線y=x﹣3與坐標(biāo)軸的兩個(gè)交點(diǎn)A,B,此拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D.
(1)求此拋物線的解析式;
(2)求S△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,一次函數(shù)的圖像與軸、軸分別交于點(diǎn)A、點(diǎn)B,與直線 相交于點(diǎn)C.過點(diǎn)B作軸的平行線l.點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn).
(1)求點(diǎn)A,點(diǎn)B的坐標(biāo).
(2)若,求點(diǎn)P的坐標(biāo).
(3)若點(diǎn)E是直線上的一個(gè)動(dòng)點(diǎn),當(dāng)△APE是以AP為直角邊的等腰直角三角形時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△A1B1C1是位似圖形.
(1)在網(wǎng)格上建立平面直角坐標(biāo)系,使得點(diǎn)A的坐標(biāo)為(﹣6,﹣1),點(diǎn)C1的坐標(biāo)為(﹣3,2),則點(diǎn)B的坐標(biāo)為 ;
(2)以點(diǎn)A為位似中心,在網(wǎng)格圖中作△AB2C2,使△AB2C2和△ABC位似,且位似比為1:2;
(3)在圖上標(biāo)出△ABC與△A1B1C1的位似中心P,并寫出點(diǎn)P的坐標(biāo)為 ,計(jì)算四邊形ABCP的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作發(fā)現(xiàn):如圖,已知△ABC和△ADE均為等腰三角形,AB=AC,AD=AE,將這兩個(gè)三角形放置在一起,使點(diǎn)B,D,E在同一直線上,連接CE.
(1)如圖1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求證:△BAD≌△CAE;
(2)在(1)的條件下,求∠BEC的度數(shù);
拓廣探索:(3)如圖2,若∠CAB=∠EAD=120°,BD=4,CF為△BCE中BE邊上的高,請(qǐng)直接寫出EF的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com