如圖,拋物線y=x2+1與雙曲線y=
k
x
的交點(diǎn)A的橫坐標(biāo)是1,
(1)求k的值;
(2)根據(jù)圖象,求出關(guān)于x的不等式
k
x
+x2+1<0的解集.
分析:(1)先把x=1代入二次函數(shù)可確定A點(diǎn)坐標(biāo),然后把A點(diǎn)坐標(biāo)代入反比例函數(shù)解析式可求出k的值;
(2)求不等式
k
x
+x2+1<0的解集即求不等式x2+1<-
2
x
的解集,由于y=
2
x
與y=-
2
x
關(guān)于y軸對(duì)稱,則y=x2+1與y=-
2
x
的交點(diǎn)為(-1,2),則當(dāng)-1<x<0時(shí),反比例函數(shù)圖象在拋物線上方.
解答:解:(1)把x=1代入y=x2+1得y=1+1=2,
所以A點(diǎn)坐標(biāo)為(1,2),
把A(1,2)代入y=
2
x
得k=2×1=2,
即k的值為2;
(2)-1<x<0.
點(diǎn)評(píng):本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當(dāng)a>0,拋物線開(kāi)口向上;對(duì)稱軸為直線x=-b2a;拋物線與y軸的交點(diǎn)坐標(biāo)為(0,c).也考查了反比例函數(shù)性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2+4x與x軸分別相交于點(diǎn)B、O,它的頂點(diǎn)為A,連接AB,AO.
(1)求點(diǎn)A的坐標(biāo);
(2)以點(diǎn)A、B、O、P為頂點(diǎn)構(gòu)造直角梯形,請(qǐng)求一個(gè)滿足條件的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點(diǎn)A(x1,0)、B(x2,0),點(diǎn)A在點(diǎn)B的左側(cè).當(dāng)x=x2-2時(shí),y
0(填“>”“=”或“<”號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對(duì)稱軸是直線x=-1,且頂點(diǎn)在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線MG,垂足為G,過(guò)點(diǎn)M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點(diǎn),若M點(diǎn)的橫坐標(biāo)為x,矩形MNHG的周長(zhǎng)為l.
(1)求出k的值;
(2)寫(xiě)出l關(guān)于x的函數(shù)解析式;
(3)是否存在點(diǎn)M,使矩形MNHG的周長(zhǎng)最?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•揚(yáng)州)如圖,拋物線y=x2-2x-8交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.
(1)求直線AB對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點(diǎn)A、B之間平行移動(dòng),直尺兩長(zhǎng)邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求拋物線頂點(diǎn)M關(guān)于x軸對(duì)稱的點(diǎn)M′的坐標(biāo),并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案