【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b=0;②a+c>b;③拋物線與x軸的另一個交點為(3,0);④abc>0.其中正確的結(jié)論是(填寫序號).
【答案】①④
【解析】解:∵拋物線的對稱軸為直線x=﹣ =1, ∴2a+b=0,所以①正確;
∵x=﹣1時,y<0,
∴a﹣b+c<0,
即a+c<b,所以②錯誤;
∵拋物線與x軸的一個交點為(﹣2,0)
而拋物線的對稱軸為直線x=1,
∴拋物線與x軸的另一個交點為(4,0),所以③錯誤;
∵拋物線開口向上,
∴a>0,
∴b=﹣2a<0,
∵拋物線與y軸的交點在x軸下方,
∴c<0,
∴abc>0,所以④正確.
所以答案是①④.
【考點精析】通過靈活運用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c)即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,PR=PS,則下列結(jié)論:①點P在∠A的角平分線上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司經(jīng)銷甲種型號電腦,今年三月份的電腦售價比去年同期每臺降價1000元,如果賣出相同數(shù)量的電腦,去年銷售額為10萬元,今年銷售額只有8萬元.
(1)今年三月份甲種電腦每臺售價多少元?
(2)為了增加收入,電腦公司決定再經(jīng)銷乙種型號電腦.已知甲種電腦每臺進價為3500元,乙種電腦每臺進價為3000元,公司預(yù)計用不多于5萬元且不少于4.8萬元的資金購進這兩種電腦共15臺,有幾種進貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角∠O的內(nèi)部有一滑動桿AB,當(dāng)端點A沿直線AO向下滑動時,端點B會隨之自動地沿直線OB向左滑動,如果滑動桿從圖中AB處滑動到A′B′處,那么滑動桿的中點C所經(jīng)過的路徑是( )
A.直線的一部分
B.圓的一部分
C.雙曲線的一部分
D.拋物線的一部分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為 m.
(1)求該拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=ax+c和反比例函數(shù)y2= 的圖象如圖所示,則二次函數(shù)y3=ax2+bx+c的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=(x﹣3)(x+1)與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,點D為頂點.
(1)求點B及點D的坐標(biāo).
(2)連結(jié)BD,CD,拋物線的對稱軸與x軸交于點E.
①若線段BD上一點P,使∠DCP=∠BDE,求點P的坐標(biāo).
②若拋物線上一點M,作MN⊥CD,交直線CD于點N,使∠CMN=∠BDE,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com