【題目】如圖,一次函數(shù)的圖象和反比例函數(shù)的圖象相交于兩點(diǎn).

1)試確定一次函數(shù)與反比例函數(shù)的解析式;

2)求的面積;

3)結(jié)合圖象,直接寫出使成立的的取值范圍.

【答案】1)反比例函數(shù)的解析式為,一次函數(shù)的解析式為;(28;(3.

【解析】

1)將點(diǎn)A代入反比例函數(shù)中求出反比例函數(shù)的解析式,再根據(jù)反比例函數(shù)求出點(diǎn)B的坐標(biāo),最后將AB的坐標(biāo)代入一次函數(shù)解析式中求出一次函數(shù)的解析式;

2)求出一次函數(shù)與x軸的交點(diǎn)坐標(biāo),再利用割補(bǔ)法得到,即可得出答案;

3)根據(jù)圖像判斷即可得出答案.

解:(1)∵在反比例函數(shù)的圖象上,

,

則反比例函數(shù)的解析式為.

代入,得

.

兩點(diǎn)的坐標(biāo)分別代入,得

解得

則一次函數(shù)的解析式為.

2)設(shè)一次函數(shù)的圖象與軸的交點(diǎn)為.

中,令,得,

,即,

.

3)∵

即一次函數(shù)的圖像在反比例函數(shù)的圖像的上方

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3

1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為   ;

2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】岳陽市整治農(nóng)村“空心房”新模式,獲評(píng)全國(guó)改革開放40年地方改革創(chuàng)新40案例.據(jù)了解,我市某地區(qū)對(duì)轄區(qū)內(nèi)“空心房”進(jìn)行整治,騰退土地1200公頃用于復(fù)耕和改造,其中復(fù)耕土地面積比改造土地面積多600公頃.

1)求復(fù)耕土地和改造土地面積各為多少公頃;

2)該地區(qū)對(duì)需改造的土地進(jìn)行合理規(guī)劃,因地制宜建設(shè)若干花卉園和休閑小廣場(chǎng),要求休閑小廣場(chǎng)總面積不超過花卉園總面積的,求休閑小廣場(chǎng)的總面積最多為多少公頃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,EF,EB⊙O的弦,且EF=EBEFAB交于點(diǎn)C,連接OF,若∠AOF=40°,則∠F的度數(shù)是(

A.20°B.35°C.40°D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的頂點(diǎn)分別在軸和軸上,與雙曲線恰好交于的中點(diǎn). ,則的值為(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,ACBD交于點(diǎn)M,點(diǎn)FAD上,AF=6cm,BF=12cm,FBM=CBM,點(diǎn)EBC的中點(diǎn),若點(diǎn)P1cm/s秒的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)F運(yùn)動(dòng);點(diǎn)Q同時(shí)以2cm/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到F點(diǎn)時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)__秒時(shí),以P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)坐標(biāo)為,并與軸交于點(diǎn),點(diǎn)是對(duì)稱軸與軸的交點(diǎn).

(1)求拋物線的解析式;

(2)如圖①所示, 是拋物線上的一個(gè)動(dòng)點(diǎn),且位于第一象限,連結(jié)BP、AP,的面積的最大值;

(3)如圖②所示,在對(duì)稱軸的右側(cè)作交拋物線于點(diǎn),求出點(diǎn)的坐標(biāo);并探究:軸上是否存在點(diǎn),使?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn)

1)如圖1,若點(diǎn)是直線上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)軸交直線于點(diǎn),作于點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn),點(diǎn)軸上一動(dòng)點(diǎn),連接,.當(dāng)最長(zhǎng)時(shí),求的最小值;

2)如圖2,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),將沿直線平移得到,直線軸交于點(diǎn),連接,將 沿邊翻折得 ,連接, ,當(dāng)是等腰三角形時(shí),求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD2AB.將矩形ABCD對(duì)折,得到折痕MN,沿著CM折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)為E,MEBC的交點(diǎn)為F;再沿著MP折疊,使得AMEM重合,折痕為MP,此時(shí)點(diǎn)B的對(duì)應(yīng)點(diǎn)為G.下列結(jié)論:CMP是直角三角形;ABBPPNPG;PMPF;若連接PE,則△PEG∽△CMD.其中正確的個(gè)數(shù)為( 。

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案