【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點(diǎn)MDE的中點(diǎn).過(guò)點(diǎn)EAD平行的直線交射線AM于點(diǎn)N

(1)當(dāng)AB,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:MAN的中點(diǎn);

(2)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:CAN為等腰直角三角形;

(3)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時(shí),(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請(qǐng)說(shuō)明理由.

【答案】(1)證明見解析;(2)證明見解析;(3△ACN仍為等腰直角三角形.證明見解析.

【解析】試題分析:(1)由EN∥AD和點(diǎn)MDE的中點(diǎn)可以證到△ADM≌△NEM,從而證到MAN的中點(diǎn).

2)易證AB=DA=NE∠ABC=∠NEC=135°,從而可以證到△ABC≌△NEC,進(jìn)而可以證到AC=NC,∠ACN=∠BCE=90°,則有△ACN為等腰直角三角形.

3)延長(zhǎng)ABNE于點(diǎn)F,易得△ADM≌△NEM,根據(jù)四邊形BCEF內(nèi)角和,可得∠ABC=∠FEC,從而可以證到△ABC≌△NEC,進(jìn)而可以證到AC=NC∠ACN=∠BCE=90°,則有△ACN為等腰直角三角形.

試題解析:(1)如圖1,

∵EN∥AD,

∴∠MAD=∠MNE,∠ADM=∠NEM

點(diǎn)MDE的中點(diǎn),

∴DM=EM

△ADM△NEM中,

∴△ADM≌△NEM

∴AM=MN

∴MAN的中點(diǎn).

2)如圖2,

∵△BAD△BCE均為等腰直角三角形,

∴AB=AD,CB=CE,∠CBE=∠CEB=45°

∵AD∥NE,

∴∠DAE+∠NEA=180°

∵∠DAE=90°,

∴∠NEA=90°

∴∠NEC=135°

∵A,BE三點(diǎn)在同一直線上,

∴∠ABC=180°﹣∠CBE=135°

∴∠ABC=∠NEC

∵△ADM≌△NEM(已證),

∴AD=NE

∵AD=AB,

∴AB=NE

△ABC△NEC中,

∴△ABC≌△NEC

∴AC=NC,∠ACB=∠NCE

∴∠ACN=∠BCE=90°

∴△ACN為等腰直角三角形.

3△ACN仍為等腰直角三角形.

證明:如圖3,延長(zhǎng)ABNE于點(diǎn)F,

∵AD∥NEM為中點(diǎn),

易得△ADM≌△NEM,

∴AD=NE

∵AD=AB,

∴AB=NE

∵AD∥NE,

∴AF⊥NE,

在四邊形BCEF中,

∵∠BCE=∠BFE=90°

∴∠FBC+∠FEC=360°﹣180°=180°

∵∠FBC+∠ABC=180°

∴∠ABC=∠FEC

△ABC△NEC中,

∴△ABC≌△NEC

∴AC=NC∠ACB=∠NCE

∴∠ACN=∠BCE=90°

∴△ACN為等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)(2xy)(3x22xy4y2);

(2)(m2nmn1)·(6m3n)

(3)(3x2y)2·(4xy25y36x1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).

(1)求梯子底端B外移距離BD的長(zhǎng)度;

(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠ACB=90°,AC=BC=4,點(diǎn)DAB的中點(diǎn),MN分別在BC,AC上,且BM=CN現(xiàn)有以下四個(gè)結(jié)論:

DN=DM NDM=90°; 四邊形CMDN的面積為4④△CMN的面積最大為2.

其中正確的結(jié)論有(

A. ①②④; B. ①②③; C. ②③④ D. ①②③④.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】聰聰是一位非常喜歡動(dòng)腦筋的初一學(xué)生,特別是學(xué)了幾何后,更覺(jué)得數(shù)學(xué)奇妙,當(dāng)聰聰學(xué)完圖形的初步知識(shí)后對(duì)角平分線興趣更濃厚,下面請(qǐng)你和聰聰同學(xué)一起來(lái)探究奇妙的角平分線吧已知,射線OE,OF分別是的角平分線.

如圖1,若射線OC的內(nèi)部,且,求的度數(shù);

如圖2,若射線OC的內(nèi)部繞點(diǎn)O旋轉(zhuǎn),且,求的度數(shù);

若射線OC的外部繞點(diǎn)O旋轉(zhuǎn)旋轉(zhuǎn)中,均指小于的角,其余條件不變,請(qǐng)借助圖3探究的大小,請(qǐng)直接寫出的度數(shù)不寫探究過(guò)程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市有一塊長(zhǎng)為(3a+b)米,寬為(2a+b)米的長(zhǎng)方形地塊,中間是邊長(zhǎng)為(a+b)米的正方形,規(guī)劃部門計(jì)劃將在中間的正方形修建一座雕像,四周的陰影部分進(jìn)行綠化,

1)綠化的面積是多少平方米?(用含字母a、b的式子表示)

2)求出當(dāng)a20,b12時(shí)的綠化面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上有兩點(diǎn)AB,點(diǎn)A對(duì)應(yīng)的數(shù)是40,點(diǎn)B對(duì)應(yīng)的數(shù)是

求線段AB的長(zhǎng).

如圖2,O表示原點(diǎn),動(dòng)點(diǎn)P、T分別從BO兩點(diǎn)同時(shí)出發(fā)向左運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)向右運(yùn)動(dòng),點(diǎn)P、TQ的速度分別為5個(gè)單位長(zhǎng)度秒、1個(gè)單位長(zhǎng)度秒、2個(gè)單位長(zhǎng)度秒,設(shè)運(yùn)動(dòng)時(shí)間為t

求點(diǎn)PT、Q表示的數(shù)用含有t的代數(shù)式表示;

在運(yùn)動(dòng)過(guò)程中,如果點(diǎn)M為線段PT的中點(diǎn),點(diǎn)N為線段OQ的中點(diǎn),試說(shuō)明在運(yùn)動(dòng)過(guò)程中等量關(guān)系始終成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用水,我市居民使用自來(lái)水計(jì)費(fèi)方式實(shí)施階梯水價(jià),具體標(biāo)準(zhǔn)見表1,表2分別是小明、小麗、小斌、小宇四家2017年的年用水量和繳納水費(fèi)情況.

1:大連市居民自來(lái)水實(shí)施階梯水價(jià)標(biāo)準(zhǔn)情況:

階梯

每戶年用水量(立方米)

水價(jià)(含污水處理費(fèi))(元/立方米)

第一階梯

0m(含m

a

第二階梯

m240(含240

4.40

第三階梯

240以上

7.85

2:四個(gè)家庭2017年的年用水量和繳納水費(fèi)情況:

家庭

小明

小麗

小斌

小宇

用水量(立方米)

50

100

200

220

水費(fèi)(元)

162.5

325

673

761

請(qǐng)你根據(jù)表1、表2提供的數(shù)據(jù)回答下列問(wèn)題:

1)寫出表1中的a,m的值;

2)小穎家2017年使用自來(lái)水共繳納水費(fèi)827元,則她家2017年的年用水量是多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校舉行“每天鍛煉一小時(shí),健康生活一輩子”為主題的體育活動(dòng),并開展了以下體育項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng)。為了解選擇各項(xiàng)體育活動(dòng)的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問(wèn)題:

1)這次活動(dòng)一共調(diào)查了 名學(xué)生;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)求選擇籃球項(xiàng)目的人數(shù)在扇形統(tǒng)計(jì)圖中所占的百分比?

4)若該學(xué)校有1500人,請(qǐng)你估計(jì)該學(xué)校選擇乒乓球項(xiàng)目的學(xué)生人數(shù)約是多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案